
Coordinator based
failure/recovery

simulation framework
Tsatsarakis Myron

1

System wide failures

● Hard to simulate
○ Turn off machine?
○ Disconnect power cable?

2

Framework idea

● The coordinator is running on the main thread
● It’s worker threads are used to run the experiments where

the crash/recovery scenarios are simulated
● The coordinator can terminate it’s worker threads to

simulate a failure event
○ pthread_cancel(thread.native_handle())

● The coordinator can restart it’s worker threads to
simulate a recovery event

○ failedThread = std::jthread(RecoveryFunction)

3

Both failure modes are encapsulated

Independent thread failures
“Some threads may fail”

System wide
failures

“All threads fail”

Coordinator main
thread does not fail

Owns
worker
threads

4

Regarding thread resurrection

● We cannot reuse a terminated thread object
○ We can assign a new one in its place instead

● Entry point (code) of resurrected thread?
○ Depends on the system implementation
○ May restart it’s operation
○ May continue where it has left off
○ May execute a recovery operation

5

Event system for failure/recovery

● Failures are simulated as events appended to an event
queue

● The event loop is run on the main thread
● Example events

○ Timer based thread failure → The coordinator terminates a thread
after a time duration has passed

○ System state based thread crash → The coordinator terminates a thread
based on a condition regarding the system state

● Same principles apply for recovery events

6

Coordinator runtime draft

Input → preparation and experiment operations, number of
worker threads

State → worker threads, event queue, …

Run(){
Create Threads
Assign experiment operations to threads and execute
While (eventQueue.IsEmpty() == false)

Process event
Wait on each live thread

}

7

Experiment templates/examples

● Base runtime
○ An experiment without failure/recovery

● Recovery runtime benchmark
○ Only the recovery function is measured by the user

● System wide failure/recovery
○ All threads fail, then the same number of threads are restarted,

running recovery code
● Partial system failure/recovery

○ Some threads fail, then are restarted running recovery code
● State based failure/recovery

○ Eg. Some threads fail after our data structure contains X elements
○ Eg. Some threads are restarted after it contains Y elements

8

Implementing thread failures

● Cooperative methods require user responsibility for synchronous handling on worker thread
● “It’s not an abrupt failure if I can queue and handle it at certain time points”

9

Coordinator Worker

Cooperative token based

Stop = true If stop: terminate else: continue

Cooperative signal based

signal_send(stop) signal_wait(stop) terminate

signal_send(stop) signal_wait(stop) sleep(then is resurrected)

Forced

pthead_cancel(thread) Gets canceled

Implementing a Recoverable Thread

● Assigned a fixed id
● The fixed id does not change upon failure or restart
● The lifetime of a recoverableThread includes failure/recovery

events acted upon it.
● Recoverability

○ Overwrite the crashed thread with a newly created one

struct RecoverableThread {
std::jthread thread;
int fixedId;

};
● End of experiment run condition

○ A std::latch is initialized with the input number of worker threads
○ A recoverableThread ends it’s lifetime upon reaching the latch

10

Coordinator runtime draft
Coordinator(){

Create recoverableThreads based on input
latch.Init(recoverableThreads.Size());
PrepareExperiment(); //adds failure/recovery events to eventQueue
For each thread:

thread.RunAsync(Worker);
While eventQueue.IsEmpty() == false:

Process event //send faulure/recovery events to threads
For each thread:

thread.Join();
}
Worker(){

InputExperiment();
latch.ArriveAndWait();

}

11

Appending Failure/Recovery events to queue

● Typically occurs on
○ Experiment preparation -> User prepares a sequence of events
○ During event handling -> Handling an event triggers another event
○ Triggered by timers -> More on that later…

● Failure
○ eventQueue.append([&](){pthread_cancel(recoverableThread[2]);});
○ eventQueue.append([&](){if(db.IsFull())pthread_cancel(recoverableThread[7]);});

● Recovery
○ eventQueue.append([&](){recoverableThread[2]=std::jthread(InsertWorkload);});
○ eventQueue.append([&](){if(db.IsFull())recoverableThread[7]=std::jthread(Recover);});

12

Timer based events

● Sometimes we want to schedule failure/recovery events to
happen on certain intervals

● Timer threads asynchronously append an event after a duration

StartTimer(eventFunction, duration, repetitions){
std::jthread([&](){
For(i = 0 -> repetitions):

sleep(duration);
eventQueue.append(eventFunction);

}).detach();}

StartTimer([&](){cancel(thread[4]);restart(thread[4]);}, 10s, 3);

13

Coordinator runtime draft
Coordinator(){

recoverableThreads = {...}; //based on input
latch.Init(recoverableThreads.Size());
PrepareExperiment();
For each thread in recoverableThreads:

thread.RunAsync(Worker);
While !done:

eventQueue.WaitForEvent();
events = eventQueue.DequeueAll();
For each event in events: event();

For each thread in recoverableThreads:
thread.Join();

}

14

Worker(){
RunExperiment();
latch.ArriveAndWait();
std::call_once({done=true;});

}

Research user requirements

● Determine whether persistent concurrent data structure
authors want to use this tool

● Is my experiment abstraction and usage scenarios
convenient

● Access experiment codes of current work
● LCRQueue experiments by Mallis, simulate usage scenarios
● Friday

15

Optimization Note: Thread CPU affinity

● Coordinator thread -> sleeps while waiting for an event
● Timer threads -> sleeps for its intended duration
● Event handling and event appending code time cost is

negligible
● Regardless
● We reserve a CPU core to exclusively pin the coordinator

and timer threads
● We pin the rest of the worker threads, to the remaining

CPU cores

16

Alternative idea: Threads as Processes

● Linux processes or MPI processes
● Need to be able to receive signals asynchronously

○ send(stop) -> when received, terminate

17

● POSIX timers generate signals. Signals are process-wide

● Man page: POSIX.1 also requires that threads share a range of other attributes (i.e.,

these attributes are process-wide rather than per-thread):

○ signal dispositions

● Man page: The signal disposition is a per-process attribute: in a multithreaded

application, the disposition of a particular signal is the same for all threads

● ChatGPT: In POSIX threads (pthreads), you cannot guarantee which specific thread will

handle a signal when it is received. When a signal is delivered to a process, the
operating system scheduler decides which thread in the process will handle the signal.
This is typically the main thread, but it can be any thread in the process.

18

LCRQueue Experiment structure

● Perform operations, then system wide failure
● Single threaded Recovery <- This is timed

○ Optional perform operations, then system wide failure
● Reset experiment state

19

LCRQueue experimentation requirements

● System wide failure based on system state
○ Fail after a number of completed operations, repeat 5 times

● System wide failure based on timer
○ Optional system state serves as an upper bound fail safe
○ Fail after 3 secs, recover after 3 secs, repeat 5 times
○ Fail after 3 inserts, recover immediately, repeat 5 times
○ Fail after 2 hours, recover after 5 mins, repeat after 5 times.

Inform me after 1.000.000 inserts or after occupied RAM > 10GB
● System wide failure by keyboard interrupt

○ Useful for debugging and demonstration
○ “I simulate a power-failure when I press ‘Space’”

● Independent thread failures are viable, if the Recovery
code takes into account other threads operating in the
queue at the same time

20

Importance of a Coordinator based framework

● Experimental Expressiveness to the user
● Time related context where failure/recovery events are

applied
○ User expresses failure/recovery scenarios in relation to the time

flow of the experiment
● Centralized management of threads/processes by framework

○ How else can I manage thread objects given as input?
○ How can I allow the user to use any thread library he wishes?

● High Level Threads modeling
○ Threads using a thread API -> management of threads
○ Threads as processes -> management of processes
○ Threads as containers -> WIP
○ Shell Script based experimentation -> ???

21

22

High Level Thread Concept

Failure/Recovery Simulation Framework API

Kernel threads API (std::thread, pthreads)
OR

Linux processes (POSIX signals, timers, fork/exec)

Failure / Recovery Events Timers

Abstraction
Level

Design Ideas

23

CPU Cache warming and benchmarking

● “Warm” cache can produce “good” times in benchmarks
● On independent thread failures caches are allowed to

retain their “warmth level”, since other threads continue
to operate on the system state

● On system wide failures, it is not realistic to retain
the cache “warmth level” after a failure, since caches
are cleared on real power-failures

● Something to keep in mind

24

Coordinator Based system

● Threads as std::threads, with STL concepts
● Workers execute experiment code

● Coordinator schedules events/timers
○ Coordinator thread / Separate thread for event handling

● Coordinator does bookkeeping of the workers (waits on his child threads)

● Cache is warm after system recovery
○ During system failure simulation: Run “cache cooling” code

25

Coordinator Based system

● Threads as pthreads, with POSIX Signals/Timers concepts
○ Workers execute experiment code
○ Coordinator sends signals/timers

■ Coordinator thread / Separate thread for signal handling
■ Signal handling by specific thread using pthread_kill()
■ (Signal disposition is process wide)

○ Coordinator does bookkeeping of the workers (waits on his child
threads)

○ Cache is warm after system recovery
■ During system failure simulation: Run “cache cooling” code

26

Coordinator based system

● Threads as Linux processes, with POSIX Signals/Timers concepts
○ Worker threads cannot operate on shared address space (user cannot share

global variables on his experiments)
○ Workers execute experiment code
○ Coordinator sends/handles signals/timers
○ Coordinator does bookkeeping of the workers (waits on his child processes)
○ Usage of fork()/exec() idiom

■ fork() duplicates parent process
■ exec() overwrites the state of the current process

● Pthread level signal handling issue is irrelevant since each
process handles its received signals

● Cache warming is irrelevant since each process has its own
virtual address space (wip convince myself about that)

27

Script(?) based system

● For System Wide failures only
● Coordinator as separate Linux process
● Worker Threads as std::threads of another Linux process

○ Workers execute experiment code
○ Coordinator sends signals/timers
○ Worker process handles signals
○ Coordinator has limited knowledge and control over worker threads
○ A script launches the Coordinator process
○ Coordinator can terminate and relaunch the Worker process using fork()/exec()
○ Usage of fork()/exec() idiom

■ fork() duplicates parent process
■ exec() overwrites the state of the current process

● Pthread level signal handling issue is irrelevant since we do not
handle individual thread failures

● Cache warming is irrelevant since each process has its own virtual
address space (wip convince myself about that)

28

STL and POSIX libs

● Preference of STL concepts over POSIX pthreads / signals
/ timers concepts

● STL features
○ Wide compiler support (GCC, Clang, MSVC) over multiple OS (Linux,

Windows, Mac)
○ C++ as well as C support

● POSIX features
○ Supported in old versions of GCC

29

Thread failure modeling

● Thread canceling
○ Coordinator forces a thread to terminate

● Request for code execution through signals
○ Coordinator issues code execution request though a signal

■ Request for sleep, busy work loop
○ Worker stops when it reaches the signal handling part

● Cooperative termination
○ Coordinator issues stop request
○ Worker stops when it reaches the request handling part
○ User must inject request handling code in experiments

● Cooperative request for code execution
○ Coordinator issues code execution request

■ Request for sleep, busy work loop
○ Worker stops when it reaches the request handling part
○ User must inject request handling code in experiments

30

API Usage
Timer Example

31

System Failure/Recovery API Use Simplified
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.ConstructFailureRecoveryScenario(
FailureFunc, RecoveryFunc, 5, 2, 3);
//fail thread 2 after 5 secs, recovery after 2, repeat 3 times
Coord.SetPrepare(PrepareExperiment);
Coord.SetRunAllThreads(RunExperiment);
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}

32

Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateAllThreads();
}
Void RecoveryFunc() {

Coord.RestartAllThreads(RecoveryCode);
}

Thread Failure/Recovery API Use Simplified
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.ConstructFailureRecoveryScenario(
FailureFunc, RecoveryFunc, 5, 2, 3);
//fail thread 2 after 5 secs, recovery after 2, repeat 3 times
Coord.SetPrepare(PrepareExperiment);
Coord.SetRunAllThreads(RunExperiment);
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}

33

Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateThread(2);
}
Void RecoveryFunc() {

Coord.RestartThread(2,RecoveryCode);
}

Thread Failure/Recovery API Use
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.SetTimer(“failureTimer”,
[](){FailureFunc();}, 5, 3).StartOnRun(true);
//fail every 7 secs, repeat 3 times
Coordinator.SetTimer(“recoveryTimer”,
[](int id){RecoveryFunc(id);}, 2, 3).StartOnRun(false);
//recover every 2 secs, repeat 3 times
Coord.SetPrepare([](){PrepareExperiment();});
Coord.SetRun(1, [](int id){RunExperiment(id);});
Coord.SetRun(2, [](int id){RunExperiment(id);});
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}
34

Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateThread(2);
Coordinator.GetTimer(“recoveryTimer”).Start();

}
Void RecoveryFunc() {

Coord.RestartThread(2,[](int id){RecoveryCode(id);});
}

User Requirements

● Uniform distribution of failures
○ Time based description of failures

● Predicate based description
● Keyboard Triggered failures
● Check “user requirements” doc

35

Experiment Descriptions

● Use a JSON file to describe the experiment parameters
● User code “ThreadRun”, “Recovery” functions are provided

as function pointer parameters
● Check “config.json” “main.cpp” files

36

WIP

● Plot cache warming phenomena
○ Experiment: Recover a 1 million uint64 array from persistence to DRAM
○ Recovery performed by new thread vs process, compare runtime
○ Code authored -> Debugging -> Recovery Works

● Construct own timing framework
○ Convenient timing utilities from my Msc work

● Construct own plotting framework
○ Using python: seaborn library
○ Library installed -> hello world done -> library conceptualization

phase
● Signal disposition to threads code

○ In a process address-space, I can send a signal from a master to a
thread of choice and run handling code

37

