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System wide failures

● Hard to simulate
○ Turn off machine?
○ Disconnect power cable?
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Framework idea

● The coordinator is running on the main thread
● It’s worker threads are used to run the experiments where 

the crash/recovery scenarios are simulated
● The coordinator can terminate it’s worker threads to 

simulate a failure event
○ pthread_cancel(thread.native_handle())

● The coordinator can restart it’s worker threads to 
simulate a recovery event

○ failedThread = std::jthread(RecoveryFunction)
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Both failure modes are encapsulated

Independent thread failures
“Some threads may fail”

System wide 
failures

“All threads fail”

Coordinator main 
thread does not fail

Owns 
worker 
threads
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Regarding thread resurrection

● We cannot reuse a terminated thread object
○ We can assign a new one in its place instead

● Entry point (code) of resurrected thread?
○ Depends on the system implementation
○ May restart it’s operation
○ May continue where it has left off
○ May execute a recovery operation
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Event system for failure/recovery

● Failures are simulated as events appended to an event 
queue

● The event loop is run on the main thread
● Example events

○ Timer based thread failure → The coordinator terminates a thread 
after a time duration has passed

○ System state based thread crash → The coordinator terminates a thread 
based on a condition regarding the system state

● Same principles apply for recovery events
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Coordinator runtime draft

Input → preparation and experiment operations, number of 
worker threads

State → worker threads, event queue, …

Run(){
Create Threads
Assign experiment operations to threads and execute
While (eventQueue.IsEmpty() == false)

Process event
Wait on each live thread

}
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Experiment templates/examples

● Base runtime
○ An experiment without failure/recovery

● Recovery runtime benchmark
○ Only the recovery function is measured by the user

● System wide failure/recovery
○ All threads fail, then the same number of threads are restarted, 

running recovery code
● Partial system failure/recovery

○ Some threads fail, then are restarted running recovery code
● State based failure/recovery

○ Eg. Some threads fail after our data structure contains X elements
○ Eg. Some threads are restarted after it contains Y elements
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Implementing thread failures

● Cooperative methods require user responsibility for synchronous handling on worker thread
● “It’s not an abrupt failure if I can queue and handle it at certain time points”
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Coordinator Worker

Cooperative token based

Stop = true If stop: terminate else: continue

Cooperative signal based

signal_send(stop) signal_wait(stop) terminate

signal_send(stop) signal_wait(stop) sleep(then is resurrected)

Forced

pthead_cancel(thread)  Gets canceled



Implementing a Recoverable Thread

● Assigned a fixed id
● The fixed id does not change upon failure or restart
● The lifetime of a recoverableThread includes failure/recovery 

events acted upon it.
● Recoverability

○ Overwrite the crashed thread with a newly created one

struct RecoverableThread {
std::jthread thread;
int fixedId;

};
● End of experiment run condition

○ A std::latch is initialized with the input number of worker threads
○ A recoverableThread ends it’s lifetime upon reaching the latch

10



Coordinator runtime draft
Coordinator(){

Create recoverableThreads based on input
latch.Init(recoverableThreads.Size());
PrepareExperiment(); //adds failure/recovery events to eventQueue
For each thread:

thread.RunAsync(Worker);
While eventQueue.IsEmpty() == false:

Process event //send faulure/recovery events to threads
For each thread:

thread.Join();
}
Worker(){

InputExperiment();
latch.ArriveAndWait();

}
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Appending Failure/Recovery events to queue

● Typically occurs on
○ Experiment preparation -> User prepares a sequence of events
○ During event handling -> Handling an event triggers another event
○ Triggered by timers -> More on that later…

● Failure
○ eventQueue.append([&](){pthread_cancel(recoverableThread[2]);});
○ eventQueue.append([&](){if(db.IsFull())pthread_cancel(recoverableThread[7]);});

● Recovery
○ eventQueue.append([&](){recoverableThread[2]=std::jthread(InsertWorkload);});
○ eventQueue.append([&](){if(db.IsFull())recoverableThread[7]=std::jthread(Recover);});
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Timer based events

● Sometimes we want to schedule failure/recovery events to 
happen on certain intervals

● Timer threads asynchronously append an event after a duration

StartTimer(eventFunction, duration, repetitions){ 
std::jthread([&](){
For(i = 0 -> repetitions):

sleep(duration);
eventQueue.append(eventFunction);

}).detach();}

StartTimer([&](){cancel(thread[4]);restart(thread[4]);}, 10s, 3);
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Coordinator runtime draft
Coordinator(){

recoverableThreads = {...}; //based on input
latch.Init(recoverableThreads.Size());
PrepareExperiment();
For each thread in recoverableThreads:

thread.RunAsync(Worker);
While !done:

eventQueue.WaitForEvent();
events = eventQueue.DequeueAll();
For each event in events: event();

For each thread in recoverableThreads:
thread.Join();

}
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Worker(){
RunExperiment();
latch.ArriveAndWait();
std::call_once({done=true;});

}



Research user requirements

● Determine whether persistent concurrent data structure 
authors want to use this tool

● Is my experiment abstraction and usage scenarios 
convenient

● Access experiment codes of current work
● LCRQueue experiments by Mallis, simulate usage scenarios
● Friday
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Optimization Note: Thread CPU affinity

● Coordinator thread -> sleeps while waiting for an event
● Timer threads -> sleeps for its intended duration
● Event handling and event appending code time cost is 

negligible
● Regardless
● We reserve a CPU core to exclusively pin the coordinator 

and timer threads
● We pin the rest of the worker threads, to the remaining 

CPU cores
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Alternative idea: Threads as Processes

● Linux processes or MPI processes
● Need to be able to receive signals asynchronously

○ send(stop) -> when received, terminate
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● POSIX timers generate signals. Signals are process-wide

● Man page: POSIX.1 also requires that threads share a range of other attributes (i.e., 

these attributes are process-wide rather than per-thread):

○ signal dispositions

● Man page: The signal disposition is a per-process attribute: in a multithreaded 

application, the disposition of a particular signal is the same for all threads

● ChatGPT: In POSIX threads (pthreads), you cannot guarantee which specific thread will 

handle a signal when it is received. When a signal is delivered to a process, the 
operating system scheduler decides which thread in the process will handle the signal. 
This is typically the main thread, but it can be any thread in the process.
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LCRQueue Experiment structure

● Perform operations, then system wide failure
● Single threaded Recovery <- This is timed

○ Optional perform operations, then system wide failure
● Reset experiment state
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LCRQueue experimentation requirements

● System wide failure based on system state
○ Fail after a number of completed operations, repeat 5 times

● System wide failure based on timer
○ Optional system state serves as an upper bound fail safe
○ Fail after 3 secs, recover after 3 secs, repeat 5 times
○ Fail after 3 inserts, recover immediately, repeat 5 times
○ Fail after 2 hours, recover after 5 mins, repeat after 5 times. 

Inform me after 1.000.000 inserts or after occupied RAM > 10GB
● System wide failure by keyboard interrupt

○ Useful for debugging and demonstration
○ “I simulate a power-failure when I press ‘Space’”

● Independent thread failures are viable, if the Recovery 
code takes into account other threads operating in the 
queue at the same time
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Importance of a Coordinator based framework

● Experimental Expressiveness to the user
● Time related context where failure/recovery events are 

applied
○ User expresses failure/recovery scenarios in relation to the time 

flow of the experiment
● Centralized management of threads/processes by framework

○ How else can I manage thread objects given as input?
○ How can I allow the user to use any thread library he wishes?

● High Level Threads modeling
○ Threads using a thread API -> management of threads
○ Threads as processes -> management of processes
○ Threads as containers -> WIP
○ Shell Script based experimentation -> ???

21



22

High Level Thread Concept

Failure/Recovery Simulation Framework API

Kernel threads API (std::thread, pthreads)
OR

Linux processes (POSIX signals, timers, fork/exec)

Failure / Recovery Events Timers

Abstraction
Level



Design Ideas
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CPU Cache warming and benchmarking

● “Warm” cache can produce “good” times in benchmarks
● On independent thread failures caches are allowed to 

retain their “warmth level”, since other threads continue 
to operate on the system state

● On system wide failures, it is not realistic to retain 
the cache “warmth level” after a failure, since caches 
are cleared on real power-failures

● Something to keep in mind
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Coordinator Based system

● Threads as std::threads, with STL concepts
● Workers execute experiment code

● Coordinator schedules events/timers
○ Coordinator thread / Separate thread for event handling

● Coordinator does bookkeeping of the workers (waits on his child threads)

● Cache is warm after system recovery
○ During system failure simulation: Run “cache cooling” code
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Coordinator Based system

● Threads as pthreads, with POSIX Signals/Timers concepts
○ Workers execute experiment code
○ Coordinator sends signals/timers

■ Coordinator thread / Separate thread for signal handling
■ Signal handling by specific thread using pthread_kill()
■ (Signal disposition is process wide)

○ Coordinator does bookkeeping of the workers (waits on his child 
threads)

○ Cache is warm after system recovery
■ During system failure simulation: Run “cache cooling” code
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Coordinator based system

● Threads as Linux processes, with POSIX Signals/Timers concepts
○ Worker threads cannot operate on shared address space (user cannot share 

global variables on his experiments)
○ Workers execute experiment code
○ Coordinator sends/handles signals/timers
○ Coordinator does bookkeeping of the workers (waits on his child processes)
○ Usage of fork()/exec() idiom

■ fork() duplicates parent process
■ exec() overwrites the state of the current process

● Pthread level signal handling issue is irrelevant since each 
process handles its received signals

● Cache warming is irrelevant since each process has its own 
virtual address space (wip convince myself about that)
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Script(?) based system

● For System Wide failures only
● Coordinator as separate Linux process
● Worker Threads as std::threads of another Linux process

○ Workers execute experiment code
○ Coordinator sends signals/timers
○ Worker process handles signals
○ Coordinator has limited knowledge and control over worker threads
○ A script launches the Coordinator process
○ Coordinator can terminate and relaunch the Worker process using fork()/exec()
○ Usage of fork()/exec() idiom

■ fork() duplicates parent process
■ exec() overwrites the state of the current process

● Pthread level signal handling issue is irrelevant since we do not 
handle individual thread failures

● Cache warming is irrelevant since each process has its own virtual 
address space (wip convince myself about that)
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STL and POSIX libs

● Preference of STL concepts over POSIX pthreads / signals 
/ timers concepts

● STL features
○ Wide compiler support (GCC, Clang, MSVC) over multiple OS (Linux, 

Windows, Mac)
○ C++ as well as C support

● POSIX features
○ Supported in old versions of GCC
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Thread failure modeling

● Thread canceling
○ Coordinator forces a thread to terminate

● Request for code execution through signals
○ Coordinator issues code execution request though a signal

■ Request for sleep, busy work loop
○ Worker stops when it reaches the signal handling part

● Cooperative termination
○ Coordinator issues stop request
○ Worker stops when it reaches the request handling part
○ User must inject request handling code in experiments

● Cooperative request for code execution
○ Coordinator issues code execution request

■ Request for sleep, busy work loop
○ Worker stops when it reaches the request handling part
○ User must inject request handling code in experiments
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API Usage
Timer Example
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System Failure/Recovery API Use Simplified
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.ConstructFailureRecoveryScenario(
FailureFunc, RecoveryFunc, 5, 2, 3);
//fail thread 2 after 5 secs, recovery after 2, repeat 3 times
Coord.SetPrepare(PrepareExperiment);
Coord.SetRunAllThreads(RunExperiment);
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}
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Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateAllThreads();
}
Void RecoveryFunc() { 

Coord.RestartAllThreads(RecoveryCode);
}



Thread Failure/Recovery API Use Simplified
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.ConstructFailureRecoveryScenario(
FailureFunc, RecoveryFunc, 5, 2, 3);
//fail thread 2 after 5 secs, recovery after 2, repeat 3 times
Coord.SetPrepare(PrepareExperiment);
Coord.SetRunAllThreads(RunExperiment);
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}
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Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateThread(2);
}
Void RecoveryFunc() { 

Coord.RestartThread(2,RecoveryCode);
}



Thread Failure/Recovery API Use
Void PrepareExperiment() {

//set up experiment state
Q.insert(1);
//etc … //split workload to threads

}
Void RunExperiment(int threadId) {

//thread code
Q.LookUp(x); //etc …

}
Int main() {

Coord.SetThreadsNumber(8);
Coordinator.SetTimer(“failureTimer”,
[](){FailureFunc();}, 5, 3).StartOnRun(true);
//fail every 7 secs, repeat 3 times
Coordinator.SetTimer(“recoveryTimer”,
[](int id){RecoveryFunc(id);}, 2, 3).StartOnRun(false);
//recover every 2 secs, repeat 3 times
Coord.SetPrepare([](){PrepareExperiment();});
Coord.SetRun(1, [](int id){RunExperiment(id);});
Coord.SetRun(2, [](int id){RunExperiment(id);});
…
Coord.Prepare();
Coord.RunAllThreads();

//parse results
Return 0;

}
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Coordinator Coord{};
Queue Q{};
Void RecoveryCode(int id) {

//Performs recovery
RunExperiment(id);

}
Void FailureFunc() {

Coord.TerminateThread(2);
Coordinator.GetTimer(“recoveryTimer”).Start();

}
Void RecoveryFunc() { 

Coord.RestartThread(2,[](int id){RecoveryCode(id);});
}



User Requirements

● Uniform distribution of failures
○ Time based description of failures

● Predicate based description
● Keyboard Triggered failures
● Check “user requirements” doc
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Experiment Descriptions

● Use a JSON file to describe the experiment parameters
● User code “ThreadRun”, “Recovery” functions are provided 

as function pointer parameters
● Check “config.json” “main.cpp” files
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WIP

● Plot cache warming phenomena
○ Experiment: Recover a 1 million uint64 array from persistence to DRAM
○ Recovery performed by new thread vs process, compare runtime
○ Code authored -> Debugging -> Recovery Works

● Construct own timing framework
○ Convenient timing utilities from my Msc work

● Construct own plotting framework
○ Using python: seaborn library
○ Library installed -> hello world done -> library conceptualization 

phase
● Signal disposition to threads code

○ In a process address-space, I can send a signal from a master to a 
thread of choice and run handling code
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