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Persistent Computing

Non-Volatile Memory (NVM)

 byte-addressable, faster than secondary 

storage

 large and less expensive than DRAM

 Recovery in case of failures
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Persistent Computing

 Some of the shared variables may 
be stored in volatile memory, 
whereas others in NVM. 

Threads

Shared Variables

p1 p2 pn

Persistent Instructions

Flush (pwb): write back a

cache line in NVM (async)

Psynch: block until preceding 

flushes have been realized. 

System-wide failures

Durable Linearizability 
[Izraelevitz, Mendes and Scott. 2016]

Detectability [Friedman et al., 2018]
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Challenge

HOW TO DESIGN 

PERSISTENT DATA STRUCTURES 

WITH LOW PERSISTENCE COST?

Are there persistence principles that we should take into 

consideration when designing such data structures?
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Insights on Evaluating Persistent Algorithms 
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

Tracking Linked List (no hand-tunned)

Capsules-Opt: strongly hand-tuned 

transformation of Harris’ linked list using 

Capsules [Attiya et al., PPoPP 2022]

Capsules: general  scheme (not hand-tunned
[Ben-David, Blelloch, Wei. 2018]

 Romulus [Correia, Felber, Ramahlete, SPAA’18]

 RedoOpt [Correiaet al., Eurosys 2020]

Tracking (red line) exhibits better performance than 

competitors as the number of threads increases.
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Insights on Evaluating Persistent Algorithms 
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

The synchronization cost of Tracking is also higher than  that of best competitor.

Tracking performs more psyncs
than best competitor

Tracking performs more pwbs
than best competitor
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Insights on Evaluating Persistent Algorithms 
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

What causes the 

good 

performance of 

Tracking?
what about the impact of 

each single persistence 

instruction?

 The impact of psyncs is negligible!

 Methodology for measuring the overhead 

of each pwb
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Insights on Evaluating Persistent Algorithms 
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

 Categorization

�Low, Medium, and High impact 
code lines with persistence 
instructions

 A flush that incurs high performance 
penalty 
 is executed on a highly-

contended variable
 precedes or follows CASes
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Persistence Principles Crucial for Performance
[Fatourou, Kallimanis & Kosmas, PPoPP’22, BEST PAPER AWARD]

1. The number of the persistence instructions should be kept as low as possible
 Store in NVM only those variables (and persist only those from their values) that are 

absolutely necessary for recoverability 

[Vast majority of work aimed at achieving this]

2. The persistence instructions should be of low cost (e.g., by 

persisting less highly-contented shared variables) [Tracking]PPoPP’22

 Avoid pwbs on variables on which CAS is performed before or after [Tracking]PPoPP’22

 Reduce accesses to recently flushed cache lines [Sela & Petrank]SPAA’21 , [MIRROR]PLDI’21 

3. Data to be persisted should be placed in consecutive memory addresses 
 pwb and psynch operate on the granularity of a cache line [PBcomb, PWFcomb]PPOPP’22, [ArchTM]FAST’21
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Principles Crucial for Performance

STUDY WHETHER PERSISTENCE CAN BE EFFICIENTLY 

SUPPORTED ON TOP OF STATE-OF-THE-ART 

ALGORITHMS DESIGNED FOR THE CONVENTIONAL 

SETTING.
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Persistent Software Combining 
[Fatourou, Kallimanis & Kosmas, PPoPP 2022, BEST PAPER AWARD]

Efficient persistent blocking and wait-free 

synchronization protocols and universal 
constructions (UC)

◦ outperform previously proposed recoverable UCs 

[RedoOpt]EuroSys’20 and STMs [CX-PTM]EuroSys’20 , [OneFile]DSN’19

stacks, queues and heaps
◦ outperform previous implementations (including specialized)

◦ queues [Sela & Petrank: OptLinkedQ, OptUnLinkedQ]SPAA’21 , [CX-PUC, CX-PTM, RedoOpt]EuroSys’20 , 

[OneFile]DSN’19 , [Capsules]SPPA’19 , 

[Friedman et al]PPoPP’18 , [Romulus]SPAA’18

◦ stacks [DFC]arXiv’20 , [OneFile]DSN’19 , [RomulusLog]SPAA’18
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Persistent FIFO Queues. Can we do better? 
[Giachoudis, Fatourou, Mallis, SIROCCO 2024]

 PerLCRQ, a persistent implementation of  FIFO queue that 
significantly outperforms all other persistent FIFO queue implementations.
 It adds persistence on top of LCRQ (Afek and Morrison, PPoPP 2013), illustrating 

how to efficiently persist algorithms that use Fetch&Add.  

 PerLCRQ introduces techniques for reducing the persistence cost that 
could be of general interest.

 Framework to simulate failures and measure the recovery cost of algs. 
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 Implement Queue as an 
infinite table, Q. 

 Head points to first-
inserted element in Q 

 Tail points to last-
inserted element in Q 

0 1 2 3 4 5

…

Tail

Q

⊥ ⊥ ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]

Initial State

 Head and Tail: Fetch&Increment

(FAI) objects that are incremented 

indefinitely. 

 Enqueue (Dequeue) gets an index j 

by performing FAI on Tail (Head).

 Enqueue with index j inserts its 

item in Q[j mod R]

 A Dequeue with index j can 

exhaust only the item inserted by 

the Enqueue with index j. 

 The use of Fetch&Increment ensures 

that every position of the array is 

accessed by just two processes.
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Enqueue

1. Perform FAI on Tail to get 
next available position (pos) 
of Q

2. Perform Get&Set on Q[pos] 
to store the new value there

3. If result is ⊥, return

4. Otherwise, repeat steps 
above

0 1 2 3 4 5

…

Tail Q

5 ⊥ ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]
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Dequeue

1. Perform FAI on Head to get 
next position of Q to dequeue from

2. Perform Get&Set on Q[pos] 
to store T there

3. If result is a value other than ⊥, 
return result

4. If Head > Tail, return EMPTY

5. Otherwise, repeat above steps

0 1 2 3 4 5

…

Tail
Q

5 3 ⊥⊥⊥⊥

Head

0 1 2 3 4 5

…

Tail Q

T 3 ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]
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Enqueue

1.   Perform FAI on Tail to get next 
available position (pos) of Q

2.   Perform Get&Set on Q[pos] to store 
the new value there

3.   If result is ⊥
PERSIST Q[pos] 
return

4.   Otherwise, repeat steps above

1 2 3 4 5 6

…5 3 ⊥⊥⊥⊥

Persistent IQ

Dequeue

1. Perform FAI on Head to get 
next position of Q to dequeue from

2. Perform Get&Set on Q[pos] to store T there

3. If result is not equal to ⊥
PERSIST Q[pos] 
return result

1. If Head > Tail
PERSIST Q[pos] 
return EMPTY

1. Otherwise, repeat above steps

…T 3 ⊥⊥⊥⊥
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Persistent IQ: Low Cost of Persistence

Persistence  Principles crucial for 
Performance

 Low number of persistence 
instructions

 Avoid persisting highly-
contended shared variables

 Persist consecutive data

Persistence  Properties of IQ

A single pair of a pwb and psync per 
operation

Persistence instructions are executed on 
shared vars on which at most two threads 
contend. 

Data are stored in consecutive memory 
(array Q). 
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Persistent IQ: Low Cost of Persistence

Avoiding persisting Head and Tail:
1. adds complexity to the Recovery function,

2. makes it hard to assign linearization points,
3. results in long argumentation to prove that PerIQ is correct.

BUT

Experiments show that it is much more efficient.
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…

Q
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Tail, Head = 4



Persistent IQ: Recovery

Recovering Tail

 Search Q for the first 
continuous streak of n 
unoccupied cells.

 Set Tail to be the index of the 
first cell of this streak.

 When a crash occurs, some 
of the active enqueues have 
written back their value, 
others not.

 All missing items are by 
active enqueues. 

 These are at most n. 

Recovering Head

 Starting from recovered Tail, 
traverse Q towards its 
beginning until meeting the 
first cell containing T. 

 Let Head be the index of the 
next to this cell. 

 No element has the value T 
between Head and Tail. 
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Circular Queue (CRQ) [AM 2013] – Challenges

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Indices:
0 1 2 3 54

6 7 8 9 1110

0, 6

1, 7

2, 83, 9

4, 10 

5, 11

 There are many cases that require sync between enqueuers and dequeuers. 

 Empty Transition: dequeue with index j finds Q[j mod R] unoccupied.

 Unsafe Transition: dequeue with index j arrives while Q[j mod R] is 

occupied by item of index lower than j.

Circular array of size R
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Persistent CRQ

 PerCRQ achieves to perform just one pair of pwb-

psync instructions per operation

 In PerCRQ, the value of Head needs to be persisted 
once per successful dequeue operation.

Panagiota Fatourou EMERALD 2024 21



Technique for Reducing cost of persisting Head

 Each thread maintains a local copy 
of Head, which it updates every 
time it updates Head.

 When necessary, threads persist 
their local copy of Head instead of 
Head.

 At recovery, they read the persisted 
values of local copies of Head and 
decide what the recovered value of 
Head should be. 
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• Each experiment simulates 107 atomic 
operations (enqueues and dequeues) 
in total.

• Each of the n threads simulates 107/n
operations.

• We measure millions of operations executed 
per second.

• PBQueue and PWFQueue are the previous 
state-of-the-art persistent FIFO queues, 
outperforming by far previous such implems.

Evaluation

Machine with 2 Intel(R) Xeon(R) 5318 processors with 24 cores each (96 logical cores total),

equipped with  128 GB Intel Optane 200 Series Persistent Memory. 
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Summary – Methodology for designing well-
performed persistent data structures & algorithms

2. Start with the STATE-OF-THE-ART concurrent implementation of the data 

structure you would like to implement using the new hardware. 

3. Focusing on NVM, try to respect the persistence principles at all stages of the design of 
the persistent version
 Maintain the number of persistence instructions as low as possible. 

 Persistence instructions of low cost. 

 Data to be persisted should be placed in consecutive memory addresses.

4. Come up with new techniques, if necessary, to fully respect all principles that 

are crucial for performance. 
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1. Start by experimenting with the system/hardware to understand its 
performance properties and come up with principles crucial for performance. 



Concerns, Questions and Open Problems

Future of NVM computing?

Will these results be relevant if new NVM technology is 
provided in the future?
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Principles & Techniques

 Some of them may no longer be needed. 

 Most of them are quite fundamental. 

 Avoid performing operations on highly-contended variables. 

 Perform as less instructions as possible.

 Study adaptations of state-of-the-art algorithms first. 



Thank you!

https://persist-project.gr/

faturu@csd.uoc.gr
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