
Highly-Efficient Persistent Data Structures
The performance principles that govern

their design*

PANAGIOTA FATOUROU
Foundat ion for Research and Technology – Hellas, Inst itute of Computer Science

University of Crete, Department of Computer Science, Greece

* Supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “Second Call for HFRI Research Projects to support

Faculty Members and Researchers” (project number: 3684)

Persistent Computing

Non-Volatile Memory (NVM)

 byte-addressable, faster than secondary

storage

 large and less expensive than DRAM

 Recovery in case of failures

N
O

N
-
V

O
L
A

T
IL

EDRAM NVM

SECONDARY

STORAGE

CACHE HIERARCHY

V
O

L
A

T
IL

E L1 L2 L3

Panagiota Fatourou EMERALD 2024 2

Persistent Computing

 Some of the shared variables may
be stored in volatile memory,
whereas others in NVM.

Threads

Shared Variables

p1 p2 pn

Persistent Instructions

Flush (pwb): write back a

cache line in NVM (async)

Psynch: block until preceding

flushes have been realized.

System-wide failures

Durable Linearizability
[Izraelevitz, Mendes and Scott. 2016]

Detectability [Friedman et al., 2018]

Panagiota Fatourou EMERALD 2024 3

Challenge

HOW TO DESIGN

PERSISTENT DATA STRUCTURES

WITH LOW PERSISTENCE COST?

Are there persistence principles that we should take into

consideration when designing such data structures?

Panagiota Fatourou EMERALD 2024 4

Insights on Evaluating Persistent Algorithms
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

Tracking Linked List (no hand-tunned)

Capsules-Opt: strongly hand-tuned

transformation of Harris’ linked list using

Capsules [Attiya et al., PPoPP 2022]

Capsules: general scheme (not hand-tunned
[Ben-David, Blelloch, Wei. 2018]

 Romulus [Correia, Felber, Ramahlete, SPAA’18]

 RedoOpt [Correiaet al., Eurosys 2020]

Tracking (red line) exhibits better performance than

competitors as the number of threads increases.

Panagiota Fatourou EMERALD 2024 5

Insights on Evaluating Persistent Algorithms
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

The synchronization cost of Tracking is also higher than that of best competitor.

Tracking performs more psyncs
than best competitor

Tracking performs more pwbs
than best competitor

Panagiota Fatourou EMERALD 2024 6

Insights on Evaluating Persistent Algorithms
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

What causes the

good

performance of

Tracking?
what about the impact of

each single persistence

instruction?

 The impact of psyncs is negligible!

 Methodology for measuring the overhead

of each pwb

Panagiota Fatourou EMERALD 2024 7

Insights on Evaluating Persistent Algorithms
[Attiya, Ben-Baruch, Fatourou, Hendler, Kosmas, PPoPP 2022]

 Categorization

�Low, Medium, and High impact
code lines with persistence
instructions

 A flush that incurs high performance
penalty
 is executed on a highly-

contended variable
 precedes or follows CASes

Panagiota Fatourou EMERALD 2024 8

Persistence Principles Crucial for Performance
[Fatourou, Kallimanis & Kosmas, PPoPP’22, BEST PAPER AWARD]

1. The number of the persistence instructions should be kept as low as possible
 Store in NVM only those variables (and persist only those from their values) that are

absolutely necessary for recoverability

[Vast majority of work aimed at achieving this]

2. The persistence instructions should be of low cost (e.g., by

persisting less highly-contented shared variables) [Tracking]PPoPP’22

 Avoid pwbs on variables on which CAS is performed before or after [Tracking]PPoPP’22

 Reduce accesses to recently flushed cache lines [Sela & Petrank]SPAA’21 , [MIRROR]PLDI’21

3. Data to be persisted should be placed in consecutive memory addresses
 pwb and psynch operate on the granularity of a cache line [PBcomb, PWFcomb]PPOPP’22, [ArchTM]FAST’21

Panagiota Fatourou EMERALD 2024 9

Principles Crucial for Performance

STUDY WHETHER PERSISTENCE CAN BE EFFICIENTLY

SUPPORTED ON TOP OF STATE-OF-THE-ART

ALGORITHMS DESIGNED FOR THE CONVENTIONAL

SETTING.

Panagiota Fatourou EMERALD 2024 10

Persistent Software Combining
[Fatourou, Kallimanis & Kosmas, PPoPP 2022, BEST PAPER AWARD]

Efficient persistent blocking and wait-free

synchronization protocols and universal
constructions (UC)

◦ outperform previously proposed recoverable UCs

[RedoOpt]EuroSys’20 and STMs [CX-PTM]EuroSys’20 , [OneFile]DSN’19

stacks, queues and heaps
◦ outperform previous implementations (including specialized)

◦ queues [Sela & Petrank: OptLinkedQ, OptUnLinkedQ]SPAA’21 , [CX-PUC, CX-PTM, RedoOpt]EuroSys’20 ,

[OneFile]DSN’19 , [Capsules]SPPA’19 ,

[Friedman et al]PPoPP’18 , [Romulus]SPAA’18

◦ stacks [DFC]arXiv’20 , [OneFile]DSN’19 , [RomulusLog]SPAA’18

Panagiota Fatourou EMERALD 2024
11

Designed based on state-of-the-art synch techniques & UCs presented in PPoPP’12 & SPAA’11.

Persistent FIFO Queues. Can we do better?
[Giachoudis, Fatourou, Mallis, SIROCCO 2024]

 PerLCRQ, a persistent implementation of FIFO queue that
significantly outperforms all other persistent FIFO queue implementations.
 It adds persistence on top of LCRQ (Afek and Morrison, PPoPP 2013), illustrating

how to efficiently persist algorithms that use Fetch&Add.

 PerLCRQ introduces techniques for reducing the persistence cost that
could be of general interest.

 Framework to simulate failures and measure the recovery cost of algs.

Panagiota Fatourou EMERALD 2024 12

 Implement Queue as an
infinite table, Q.

 Head points to first-
inserted element in Q

 Tail points to last-
inserted element in Q

0 1 2 3 4 5

…

Tail

Q

⊥ ⊥ ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]

Initial State

 Head and Tail: Fetch&Increment

(FAI) objects that are incremented

indefinitely.

 Enqueue (Dequeue) gets an index j

by performing FAI on Tail (Head).

 Enqueue with index j inserts its

item in Q[j mod R]

 A Dequeue with index j can

exhaust only the item inserted by

the Enqueue with index j.

 The use of Fetch&Increment ensures

that every position of the array is

accessed by just two processes.

Panagiota Fatourou EMERALD 2024 13

Enqueue

1. Perform FAI on Tail to get
next available position (pos)
of Q

2. Perform Get&Set on Q[pos]
to store the new value there

3. If result is ⊥, return

4. Otherwise, repeat steps
above

0 1 2 3 4 5

…

Tail Q

5 ⊥ ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]

Panagiota Fatourou EMERALD 2024 14

Dequeue

1. Perform FAI on Head to get
next position of Q to dequeue from

2. Perform Get&Set on Q[pos]
to store T there

3. If result is a value other than ⊥,
return result

4. If Head > Tail, return EMPTY

5. Otherwise, repeat above steps

0 1 2 3 4 5

…

Tail
Q

5 3 ⊥⊥⊥⊥

Head

0 1 2 3 4 5

…

Tail Q

T 3 ⊥⊥⊥⊥

Head

LCRQ Basic Idea: IQ algorithm [AM, PPoPP 2013]

Panagiota Fatourou EMERALD 2024 15

Enqueue

1. Perform FAI on Tail to get next
available position (pos) of Q

2. Perform Get&Set on Q[pos] to store
the new value there

3. If result is ⊥
PERSIST Q[pos]
return

4. Otherwise, repeat steps above

1 2 3 4 5 6

…5 3 ⊥⊥⊥⊥

Persistent IQ

Dequeue

1. Perform FAI on Head to get
next position of Q to dequeue from

2. Perform Get&Set on Q[pos] to store T there

3. If result is not equal to ⊥
PERSIST Q[pos]
return result

1. If Head > Tail
PERSIST Q[pos]
return EMPTY

1. Otherwise, repeat above steps

…T 3 ⊥⊥⊥⊥

Panagiota Fatourou EMERALD 2024 16

Persistent IQ: Low Cost of Persistence

Persistence Principles crucial for
Performance

 Low number of persistence
instructions

 Avoid persisting highly-
contended shared variables

 Persist consecutive data

Persistence Properties of IQ

A single pair of a pwb and psync per
operation

Persistence instructions are executed on
shared vars on which at most two threads
contend.

Data are stored in consecutive memory
(array Q).

Panagiota Fatourou EMERALD 2024 17

Persistent IQ: Low Cost of Persistence

Avoiding persisting Head and Tail:
1. adds complexity to the Recovery function,

2. makes it hard to assign linearization points,
3. results in long argumentation to prove that PerIQ is correct.

BUT

Experiments show that it is much more efficient.

Panagiota Fatourou EMERALD 2024 18

1 2 3 4 5 6

…

Q

1 T 6⊥T⊥

Tail, Head = 4

Persistent IQ: Recovery

Recovering Tail

 Search Q for the first
continuous streak of n
unoccupied cells.

 Set Tail to be the index of the
first cell of this streak.

 When a crash occurs, some
of the active enqueues have
written back their value,
others not.

 All missing items are by
active enqueues.

 These are at most n.

Recovering Head

 Starting from recovered Tail,
traverse Q towards its
beginning until meeting the
first cell containing T.

 Let Head be the index of the
next to this cell.

 No element has the value T
between Head and Tail.

Panagiota Fatourou EMERALD 2024 19

Circular Queue (CRQ) [AM 2013] – Challenges

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Indices:
0 1 2 3 54

6 7 8 9 1110

0, 6

1, 7

2, 83, 9

4, 10

5, 11

 There are many cases that require sync between enqueuers and dequeuers.

 Empty Transition: dequeue with index j finds Q[j mod R] unoccupied.

 Unsafe Transition: dequeue with index j arrives while Q[j mod R] is

occupied by item of index lower than j.

Circular array of size R

Panagiota Fatourou EMERALD 2024 20

Persistent CRQ

 PerCRQ achieves to perform just one pair of pwb-

psync instructions per operation

 In PerCRQ, the value of Head needs to be persisted
once per successful dequeue operation.

Panagiota Fatourou EMERALD 2024 21

Technique for Reducing cost of persisting Head

 Each thread maintains a local copy
of Head, which it updates every
time it updates Head.

 When necessary, threads persist
their local copy of Head instead of
Head.

 At recovery, they read the persisted
values of local copies of Head and
decide what the recovered value of
Head should be.

Panagiota Fatourou EMERALD 2024 22

• Each experiment simulates 107 atomic
operations (enqueues and dequeues)
in total.

• Each of the n threads simulates 107/n
operations.

• We measure millions of operations executed
per second.

• PBQueue and PWFQueue are the previous
state-of-the-art persistent FIFO queues,
outperforming by far previous such implems.

Evaluation

Machine with 2 Intel(R) Xeon(R) 5318 processors with 24 cores each (96 logical cores total),

equipped with 128 GB Intel Optane 200 Series Persistent Memory.

Panagiota Fatourou EMERALD 2024 23

Summary – Methodology for designing well-
performed persistent data structures & algorithms

2. Start with the STATE-OF-THE-ART concurrent implementation of the data

structure you would like to implement using the new hardware.

3. Focusing on NVM, try to respect the persistence principles at all stages of the design of
the persistent version
 Maintain the number of persistence instructions as low as possible.

 Persistence instructions of low cost.

 Data to be persisted should be placed in consecutive memory addresses.

4. Come up with new techniques, if necessary, to fully respect all principles that

are crucial for performance.

Panagiota Fatourou EMERALD 2024 24

1. Start by experimenting with the system/hardware to understand its
performance properties and come up with principles crucial for performance.

Concerns, Questions and Open Problems

Future of NVM computing?

Will these results be relevant if new NVM technology is
provided in the future?

Panagiota Fatourou EMERALD 2024 25

Principles & Techniques

 Some of them may no longer be needed.

 Most of them are quite fundamental.

 Avoid performing operations on highly-contended variables.

 Perform as less instructions as possible.

 Study adaptations of state-of-the-art algorithms first.

Thank you!

https://persist-project.gr/

faturu@csd.uoc.gr

Panagiota Fatourou EMERALD 2024 26

