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Modern Data Structures

Follow optimistic synchronization or non blocking paradigms.

Permit higher parallelism.

Widely adopted in open-source software (e.g., Meta’s Folly, 
Linux Kernel).

Key Property: Unsynchronized Reads

Threads can read from a shared memory location while it is 
being concurrently modified.
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“

”

Unsynchronized Reads/Traversals in concurrent 

data structures enable high scalability but 

Complicate Memory Management!
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Example: LockFree Stack [RK Treiber, IBM, 1986]
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class Node{int data; Node* next;};
Node* Top = nullptr; 

void push (int data) {
Node* node = new Node(data);
while (true) {

Node* t = Top;
node->next = Top;
if (CAS(&Top, t, node)) 
break;

}
}

int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}  

}

Top n1

n2

n3

n4



Pop(): LockFree Stack [RK Treiber, IBM, 1986]
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int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}  

}

Top n1

n2

n3

n4

t

next

Unsynchronized read

Unsynchronized read

Works as long as the unlinked 

node is not reclaimed 



int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}  

}

Problem: Read-Reclaim Race
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t

T1

Top n3

n4

n5

n6

T2

t
T1 T2

T1
next

Top

n3

Seg fault

T1

Reader: does not know if  any thread could 

concurrently free the node it is accessing.

Reclaimer: does not know if  any thread 

can access the node it is trying to free.

T1 read-reclaim race due to unsynchronized reads!



Solution: Safe Memory Reclamation (SMR)
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Readers learn whether a node is 

safe to access i.e. will not be 

concurrently reclaimed.

Reclaimers learn whether the 

node they have unlinked is safe 

to be reclaimed, i.e., no thread 

holds a reference to the node.

Synchronize readers and reclaimers to decide a safe time to 

reclaim unlinked nodes thereby resolving errors due to read-

reclaim races.



Key Aspect: Unlink→Retire→Reclaim
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New() SMR

Reclaim()

Retire()Concurrent 

Data Structures

Allocator

retired nodes: unlinked but not yet 

reclaimed (garbage).

retire set (retSet): per thread set to 

temporarily store retired nodes. 



Popular SMR 

Algorithms
Epoch Based Reclamation

Hazard Pointers



(I) EBR: Epoch Based Reclamation
Assumption:

Threads are Quiescent (do not access shared nodes) between two 

consecutive data structures operations.

Entry Point: Operations start from an entry point in data structure, e.g., 

head in lists or root in trees.

All threads announce when they are quiescent.

Reclaimers wait for all threads to go quiescent at least once to 

reclaim retired nodes.
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t1 t2

all nodes retired before t1 are 

Safe to free after t2time
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(2) HP : Hazard Pointers
Readers:

Reserve pointers to nodes before accessing.

Unreserve pointer after they finish accessing.

Reclaimers:

Scan all published reservations.

Reclaim all retired nodes that are not reserved.
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• Epoch Based Reclamation: Fast but does not bound garbage

• Hazard Pointers Reclamation: Bounds garbage but not fast

• Ease of Use?



(II) HP : Complicated to Use

Identifying hazardous accesses!

Correctly reserving:

Write pointer at SWMR location.

Memory Fence

Validate reserved pointer.

Unreserve when operation exits.

What if  validation fails?
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int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) {

unprotect();
return EMPTY;

}
protect(t);
if (t != Top) {

unprotect(); 
continue;

}
Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
retire t;
unprotect(); 
return res;

}}}

announce

validate

mfence



EBR : Easy to Use

Announce quiescence:

startOp():

endOp():
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int pop () {
startOp();
while (true) {

Node* t = Top;
if (t == nullptr) { 

endOp();
return EMPTY;

}
Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
retire t;
endOp();
return res;

}}}



Algorithms with one trade-off  or Another

Pointer Reservation: HP, PTB, HP++

Epoch Reservation: IBR, HE

Epoch Based: EBR, RCU, DEBRA

Optimistic Access: OA, AOA, FA, VBR

Hybrid: TS, FS, Cadence
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Per-read overhead

Unbounded garbage

Custom allocator & change in 

memory layout.

Compiler or architecture dependent

Change in memory layout of  nodes &

Weaker Bound on Garbage.



Three Problems Three Solutions

Problem 1: Difficult to achieve several desirable properties 

simultaneously.  → Neutralization based reclamation

Problem2: high uneven overhead in Hazard Pointers. → Publish 

on Ping

Problem3: Deferred reclamation paradigm has drawbacks. →

Conditional Access
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Problem 1
Difficult to achieve several desirable properties simultaneously.
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Performance 
Bounded 
Garbage

Wide 
Applicability

Usability

Desirable Properties in SMRs
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Problem1: No algorithm satisfies all key desirable properties.



Neutralization Based Reclamation (NBR)

Threads follow a neutralization process.

A reclaimer, before reclaiming nodes, neutralizes all readers.

A neutralized reader either :

Discards its references, if  it hasn’t done any updates yet, or

Must have reserved the references, if  it has executed updates.

After neutralizing all readers, a reclaimer:

Scans all reservations, if  any.

Reclaims all node not reserved by any reader.
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T1

T2

SignalHandler()

pthread_kill()

Sigsetjmp()

Siglongjmp()

Data Structure Operation

Set of  nodes needed to 

execute updates are known 

beforehand.

Threads can restart from an 

entry point in read phase 

discarding their current 

references.

read phase update phase

(I) Posix Signals (II) Access-Aware Data Structure

Key Components for Neutralization
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Neutralization Process
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Data Structure Operation

Checkpoint before read phase starts

rec

rdr

reserve:

<n2>

…

retSet:

<n2>

<n6>

…

Discards all references to retired nodes 

in reclaimer’ retire set and restarts

Reserve nodes before update phase starts

Neutralization resolves read-reclaim races.

time

Cannot restart but will only access 

reserved references.



NBR Usability
NBR Interface:

CHECKPOINT()

BeginReadPhase()

EndReadPhase(…)

Retire(…)

Identify read phase

Identify write phase and all 

nodes needed beforehand.
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void operation(int key) {
   while (true) {
     CHECKPOINT();
  BeginReadPhase();
   Node* pred = head;
  Node* curr = pred->next;
  while (curr->key < k) {
    pred = curr;
   curr = curr->next;
  }

     EndReadPhase(pred, curr);

  LOCK(&pred->lock); LOCK(&curr->lock);
  if (validate(pred, curr)) {
    // do update
  }
  UNLOCK(&curr->lock); UNLOCK(&pred->lock);

}



Search Tree Throughput with NBR
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2.2x slower



Observation in NBR
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retSet:

n2

n6

…

rec1

rdr

t`

guarantee: rdr discards all unreserved 

references to nodes in retSet of  rec1.

rec2
retSet:

n3

n4

rec2 can reclaim nodes retired before 

t` without sending signals of  its own.

time

Stronger guarantee: rdr discards all 

unreserved references to nodes retired 

before t`.

When one thread sends neutralizing signals all other threads could reclaim 

without sending signals of their own.



NBR+
Low and High Watermark: Thresholds for a thread’s retSet size 
to trigger reclamation.

At High Watermark:

Send neutralization signals.

Announces start and finish times of  the neutralization process.

At Low Watermark:

Monitor if  any thread has started and finished neutralization.

Reclaim unreserved nodes up to the Low Watermark without sending 
signals.
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Search Tree Throughput with NBR+
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External Binary Search Tree
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NBR solves SMR without compromising on desirable properties.

Leverages POSIX signals.
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Problem 2
High uneven overhead in Hazard Pointers
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Reservations in Hazard Pointers

Readers: before accessing, reserve nodes and publish reservations.

Publishing reservations incurs high overhead for reader due to 

memory fences.
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Problem 2: Uneven overhead 

Although threads reclaim infrequently, readers publish reservations 

frequently (eagerly), incurring high overhead.



Publish Reservations Reactively

1/30/2026 33

Let readers maintain reservations locally and publish on demand to 

reclaimers.

Leverage posix signal based inter 

process communication.

publish reservations:SignalHandler()

ping:pthread_kill()

rec

rdr



Reader: Maintain reservations 

locally without publishing.

Publish on Ping (POP)
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resSet:

…

rec

rdr

1. Ping the reader to publish reservations, if  any.

2. Wait for reservation to be published.

3. Scan and reclaim unreserved.

In signal handler:

1. Publish reservations.

2. Indicate to reclaimer that reservation is 

published.

retSet:

n2

n6

…

t



HazardPtrPOP: Search Tree Throughput

0,0K

10,0 M

20,0 M

30,0 M

40,0 M

50,0 M

60,0 M

70,0 M

80,0 M

90,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

100% UPDATES

HP HPAsym HazardPtrPOP NR

1/30/2026 35

1.4x faster than HP and HPAsym
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Problem: EBR
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rec

rdr

time

RetSet:

n1

t

RetSet:

n1

n2

RetSet:

n1

n2

...

Wait for rdr to go quiescent.

rdr may never go quiescent. Unbounded garbage.



EBR + HazardPtrPOP (EpochPOP)
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rec

rdr

time

RetSet:

n1

t

RetSet:

n1

n2

Wait for some threshold time and then 

ping to publish

Publish current reservations

Locally reserve nodes before accessing 

like in HazardPtrPOP

RetSet:

n1

n2

n3

Reclaim unreserved nodes.



EpochPOP: Search Tree Throughput
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POP reduces Uneven Overhead in HP
Publishing reservations on ping reduces uneven overhead on 

readers in SMRs like Hazard Pointers [PPoPP 2025].

Fast and backward compatible and also works with Hazard Eras.

Local Node Reservations: solves the issue of  unbounded garbage 

in epoch-based reclamation (EBR).
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Problem 3
Deferred reclamation paradigm has drawbacks
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Deferred Reclamation & Batching

Existing SMRs defer reclamation for safety and reclaim in batches 

for performance.

Trade-off: Memory footprint vs. performance. 

Interference with allocator performance [Amort. Freeing, PPOPP 

‘24].

Hinders memory overcommitment in virtualized data centers.
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Problem3: Deferred reclamation has several downsides can we 

reclaim immediately and yet be fast?



C2

… I

… I

… I

Core

L1 Cache

C1

… I

… I

… I

Node* t = Top;
...
Node* next = t->next;
CAS(&Top, t, next)
...
delete t;

Cache Events Precede Read-Reclaim Races
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t1 t2

t1

Top:&n3 S Top:&n3 STop:&n3 M

Top n3

n4

Top:&n4 M

Invalidate

Ack

t1

t2

Top:&n3 I

n3

Seg fault

How can we leverage the synchronization events at 

cache level to resolve read-reclaim races in 

programs?



Conditional Access (CA)

A simple hardware extension utilizing hardware-software co-

design to capture cache-level synchronization events.

Exposes these events to programs via a novel set of  memory 

access instructions, effectively resolving read-reclaim races.
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(I) Capture Cache Events
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C1

… I

… I

… I

C2

… I

… I

… I

T

T

T

T

T

T

AccessRevokedBit:0 AccessRevokedBit:0

Tag Set: Tagged when accessed first time.

• subsequent invalidations indicate a 

possible read-reclaim race.

• Enables monitoring of  possible read-

reclaim race to the lines in Tag Set.

AccessRevokedBit: 

• Initially clear & Set when any of  the 

tagged lines are invalidated or leave the 

cache.

• Enables Recording of possible read-

reclaim race events for tagged cache lines.TagBit: One bit per cache line.



(II) Expose Cache Events to Programmers
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cRead addr, dest

Atomically

- Add addr to TagSet if  not in TagSet.

- If AccessRevokedBit is set, skip the 

load, and set a processor flag to 

indicate error to program.

- Else do a normal load.

cWrite addr, v

Atomically
- If AccessRevokedBit is set or addr ∉ 

TagSet. Skip store and set a 

processor flag.

- Else do a normal store.

untagOne addr

Remove Address from TagSet

untagAll

- Clear TagSet and AccessRevokedBit



Conditional Access: Working Example
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C1 C2

… I

… I

… I

Core

L1 Cache

AccessRevokedBit:0 AccessRevokedBit:0

… I

… I

… I

0

0

0

0

0

0

Invalidate

Ackt S 1 t S 1t M 1 … I 1

AccessRevokedBit:1

cRread(t)
. . .
cWrite(t, newdata)
. . .

t1 t2

t1 t2

T2 fails any subsequent 

cRead/cWrite



Using Conditional Access

1/30/2026 47

#define CACHECK if CAFAIL then untagAll(); goto
retry;

int pop () {
retry:

Node* t = CREAD(Top); CACHECK;
if (t == nullptr) untagAll();return EMPTY;

Node* next = CREAD(t->next); CACHECK;
CWRITE(&Top, next); CACHECK;
int res = t->data
delete t;
untagAll();
return res;

}

int pop () {
while (true) {
Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {
int res = t->data
delete t;
return res;
}

}  
}

Replace and Evaluate



Conditional Access Prevents Read-Reclaim 

Race
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#define CACHECK if CAFAIL then untagAll(); goto
retry;

int pop () {
retry:

Node* t = CREAD(Top); CACHECK;
if (t == nullptr) untagAll();return EMPTY;

Node* next = CREAD(t->next); CACHECK;
CWRITE(&Top, next); CACHECK;
int res = t->data
delete t;
untagAll();
return res;

}

rd1rec

rd2

0

AccessRevokedBits

0 0

TagSet

Top Top Top

rec rd1

rd2

1 1

rec rd1 rd2



Lazy List Throughput
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Memory Consumption
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CA addresses downsides of  deferred reclamation

Conditional Access: a set of  new memory access instructions 

[IPDPS ‘2023].

Key Idea: Leverage hardware-software codesign to capture cache 

events and expose them to programmers to enable safe memory 

reclamation.

Sequential data structure like ideal memory footprint along with 

concurrent data structure like throughput.
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Three Problems Three Solutions

Problem 1: Difficult to achieve several desirable properties 

simultaneously.  → Neutralization based reclamation

Problem2: high uneven overhead in Hazard Pointers. → Publish 

on Ping

Problem3: Deferred reclamation paradigm has drawbacks. →

Conditional Access
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Co-Designing with others layers of  the system stack helps solve three 

problems in safe memory reclamation.

What other problems such approaches can help with?



Thank You

Travel to HACDA Workshop in DISC 2025 

is funded by project HAR.S.H. (project no. 

YΠ3TA-0560901), within the framework of  

the National Recovery and Resilience Plan 

“Greece 2.0” with funding from the 

European Union – NextGenerationEU.
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