STITUTE OF COMPUTER SCIENCE

Rethinking Memory Reclamation for
Concurrent Data Structures

Ajay Singh

Collaborators: Trevor Brown (University of Waterloo), Michael Spear
(Lehigh University) and Al1 Mashtizadeh (University of Waterloo)

* Supported by the Hellenic Foundation for Research and Innovation (HFRI) under the "Second Call for HFRI
Research Projects to support Faculty Members and Researchers" (project number: 3684).

Modern Data Structures

& Follow optimistic synchronization or non blocking paradigms.
& Permit higher parallelism.

& Widely adopted in open-source software (e.g., Meta’s Folly,
Linux Kernel).

Key Property: Unsynchronized Reads

& Threads can read from a shared memory location while it 1s
being concurrently modified.

1/30/2026

¢¢

Unsynchronized Reads/Traversals in concurrent
data structures enable high scalability but
Complicate Memory Management!

1/30/2026

))

Example: LockFree Stack [rk Treiber, 1BM, 1986]

class Node{int data; Node* next;}; int pop () {

Node* Top = nullptr; while (true) {
Node* t = Top; Top — nl
void push (int data) { if (t == nullptr) return EMPTY; l
Node* node = new Node(data);
while (true) { Node* next = t->next; n2
Node* t = Top; if (CAS(&Top, t, next)) {
node->next = Top; int res = t->data n3
if (CAS(&Top, t, node)) delete t; // ???
break; return res; n4
)) :
} }

1/30/2026 4

Pop(): LockFree Stack [Rx Treiber, 1BM, 1986]

int pop () { Unsynchronized read

while (true) { Top — nl
Node* t = Top; \ '

: if (t == nullptr) return EMPTY; \ 9

:
Node* next = t->next; t .
if (CAS(&Top, t, next)) { next 'n3l

int res = t->data
n4

===

delete t;
return res; .
} Works as long as the unlinked
} node is not reclaimed

1/30/2026

Problem: Read-Reclaim Race

Reader: does not know 1f any thread could

int pop () { concurrently free the node it is accessing.
while (true) {

T1 Node* t = Top; T2 =

if (t == nullptr) return EMPTY; S L

Top — n3
T1 Node* next = t->next; T2 '
T1 if (CAS(&Top, t, next)) { t Top — n4
int res = t->data

T1 delete t; next
T1 return res,;

read-reclaim race due to unsynchronized reads!

né

-

} Reclaimer: does not know if any thread
can access the node it 1s trying to free. 1/30/2026 6

Solution: Safe Memory Reclamation (SMR)

Synchronize readers and reclaimers to decide a safe time to
reclaim unlinked nodes thereby resolving errors due to read-
reclaim races.

Readers learn whether a node 1s § Reclaimers learn whether the
safe to access 1.e. will not be node they have unlinked is safe
concurrently reclaimed. to be reclaimed, 1.e., no thread
holds a reference to the node.

1/30/2026

Key Aspect: Unlink-> Retire>Reclaim

retired nodes: unlinked but not yet

Concurrent Retire() reclaimed (garbage).
Data Structures retire set (retSet): per thread set to
temporarily store retired nodes.
New() SMR
Allocator

Reclaim()

1/30/2026 8

Popular SMR
Algorithms

Epoch Based Reclamation
Hazard Pointers

(I) EBR: Epoch Based Reclamation

& Assumption:

& Threads are Quiescent (do not access shared nodes) between two
consecutive data structures operations.

& Entry Point: Operations start from an entry point in data structure, e.g.,
head 1n lists or root 1n trees.

& All threads announce when they are quiescent.

& Reclaimers wait for all threads to go quiescent at least once to
reclaim retired nodes.

all nodes retired before t1 are
time Safe to free after t2

tl t2

Millions ops./s

Harris Michael List. 2K size. 100% updates

Throughput (operations per second) Peak Memory Usage (KB)

12M 1,4M

12M

10M

(kb)

E o Fast But Unbounded S8 Z

i Garbage

4M

A4 400,0K
2M >
200,0K
Qy :
0 0,0K
1 18 36 54 72 90 108 126 144 180 216 252 288 1 18 36 54 72 90 108 126 144 180 216 252 288
NR —e—EBR NR —e—EBR

#Hthreads

1/30/2026 11

(2) HP : Hazard Pointers

& Readers:
& Reserve pointers to nodes before accessing.
& Unreserve pointer after they finish accessing.
& Reclaimers:

& Scan all published reservations.

& Reclaim all retired nodes that are not reserved.

1/30/2026

12

Millions ops./s

Harris Michael List. 2K size. 100% updates

Throughput (operations/second) Peak Memory Usage (KB)
12,0 M 1,0M
~~./ 900,0K
10,0 M -
- Bounds Garbage
But Slow
6,0 M ————
2 4000k
S ~OX 5 300,0K
'CMG)
i G e R
44//‘—’/‘—‘ Q. 100,0K
0,0K 0,0K
1 18 36 54 72 90 108 126 144 180 216 252 288 1 18 36 54 72 90 108 126 144 180 216 252 288
NR —e—HP NR —e—HP

Hthreads 1/30/2026 ¥

* Epoch Based Reclamation: Fast but does not bound garbage

 Hazard Pointers Reclamation: Bounds garbage but not fast

1/30/2026 14

(II) HP : Complicated to Use
int pop () {

while (true) {

Node* t = Top; & Identifying hazardous accesses!
if (t == nullptr) {

unprotect();

return EMW
} validate

& Correctly reserving:

& Write pointer at SWMR location.

protect(t);

if (t != Top) { ®Memory Fence
unprotect(); : .
continue; & Validate reserved pointer.

t

Node* next = f->next: & Unreserve when operation exits.

if (CAS(&Top, t, next)) {
int _res = t->data
retire t;
unprotect(); 1/30/2026 15
return res;

P)

& What if validation fails?

EBR : Easy to Use

int pop () {
startOp();
while (true) {
Node* t = Top;
if _(t == nullptr) {
endOp () ;
return EMPTY,;
}
Node* next = t->next;
if (CAS(&Top, t, next)) {
int res = t->data
retire t;
endOp() ;
return res;

Pr}

Multicore Lab, University of Waterloo

& Announce quiescence:
& startOp():
& endOp():

1/30/2026

16

Algorithms with one trade-off or Another
& Pointer Reservation: HP, PTB, HP++

Weaker Bound on Garbage.
& Epoch Based: EBR, RCU, DEBRA Unbounded garbage

& Optimistic Access: OA, AOA, FA, VBR Custom allocator & change 1n

memory layout.

& Hybnid: TS, FS, Cadence . .
Compiler or architecture dependent

1/30/2026 17

Three Problems Three Solutions

& Problem 1: Difficult to achieve several desirable properties
simultaneously. =2 Neutralization based reclamation

& Problem2: high uneven overhead in Hazard Pointers. > Publish
on Ping

& Problem3: Deferred reclamation paradigm has drawbacks. =
Conditional Access

1/30/2026 18

Problem 1

Difficult to achieve several desirable properties simultaneously.

1/30/2026

19

Desirable Properties in SMRs

Bounded Wide

Garbage Applicability Eeduity

Performance

Problem1: No algorithm satisfies all key desirable properties.

1/30/2026 20

Neutralization Based Reclamation (NBR)

& Threads follow a neutralization process.

& A reclaimer, before reclaiming nodes, neutralizes all readers.

& A neutralized reader either :

& Discards its references, if it hasn’t done any updates yet, or

& Must have reserved the references, if it has executed updates.

& After neutralizing all readers, a reclaimer:
& Scans all reservations, if any.

& Reclaims all node not reserved by any reader.

1/30/2026 21

Key Components for Neutralization

(I) Posix Signals

pthread_kill()
Sigsetimp()

§igna1Handler()
Siglongymp()

v

(IT) Access-Aware Data Structure

< 1

Data Structure Operation

Sviote phase

Threads can restart from an
entry point in read phase

Set of nodes needed to

execute updates are known
beforehand.

discarding their current
references.

Neutralization Process

retSet:

<n2> [] [] []
<n6> Neutralization resolves read-reclaim races.

Discards all - Cannot restart but will only access

- - reser references.
< ¥ ln reC].alle 1GCULLILC O\/eLSO?LLYLe‘Ld\;DLe“J.e' e Ces

rec

rdr Data Structure Operation ~*

reserve:
Checkpoint before read phage starts <n2>

Reserve nodes before update phase starts

void operation(int key) {

NBR Usability white cerue) ¢

& NBR Interface: ST (o oT e oo
© CHECKPOINT() Node* curr = pred->next;
while (curr->key < k) {
¢ BeginReadPhase() pred = curr;
= - ‘t;
& EndReadPhase(...) \ Sadey Al
& Retire(...)
® Identify read phase LOCK (&pred->lock); LOCK(&curr->lock);
if (validate(pred, curr)) {
& Identify write phase and all } // do update

nodes needed beforehand. UNLOCK (&curr->lock); UNLOCK(&pred->lock);

} 1/30/2026 24

Millions ops./s
B eV en
- - -

e
(e o)

Search Tree Throughput with NBR

UPDATE ONLY WORKLOAD

NBR -+~-NR

—A—

18 54 90 126 162 198 234

H#threads

Overhead: Sending too many

neutralizing signals
O(N”2) signals for N threads to

reclaim exactly once.

Can we reduce the number of
signals and thus eliminate signaling

overhead ?

1/30/2026 25

Observation in NBR

guarantee: rdr discards all unreserved

recl \ references to nodes 1n retSet of recl.
retSet:
né v Stronger guarantee: rdr discards all
n

\ unreserved references to nodes retired
before t.

When one thread sends neutralizing signals all other threads could reclaim
without sending signals of their own.

retSet:) .
n3 rec2 can reclaim nodes retired before
n4 t* without sending signals of its own.

t‘ 1/30/2026 26 t1me

NBR+

& Low and High Watermark: Thresholds for a thread’s retSet size
to trigger reclamation.

& At High Watermark:

& Send neutralization signals.

& Announces start and finish times of the neutralization process.

& At Low Watermark:
& Monitor 1f any thread has started and finished neutralization.

& Reclaim unreserved nodes up to the Low Watermark without sending
signals.

1/30/2026 27

Search Tree Throughput with NBR+

UPDATE ONLY WORKLOAD

o BRI~ A2 o))
Qi SR es

Millions ops./s

-

P2
7

&

NBR -=NBR+ -~-NR

/A’

Only 28% slower

18 36 54 72 90 108 126 144 162 180 198 216 234 252

#threads 1/30/2026 28

Millions ops./s

120
100
30
60
40
20

External Binary Search Tree

100% UPDATES.

debra —s—hazardptr —+—1ibr

—<—71Cu nbr+ - -none
qsbr
|] 200
o et SRS Sen SR)
100
50
0

24 48 72 96 120144168192216240252
Hthreads

debra

—1rcu

qsbr

Y~

—_
c’_/‘/

10% UPDATES

Yy
re—d
|

<

nbr+

‘/
If
A

—s—hazardptr —+—1br

—-®& -none

I/hls - S>e—

24 48

72 96 120144168192216240252

1/30/2026

29

& NBR solves SMR without compromising on desirable properties.

& Leverages POSIX signals.

1/30/2026 30

Problem 2

High uneven overhead in Hazard Pointers

1/30/2026

31

Reservations in Hazard Pointers

& Readers: before accessing, reserve nodes and publish reservations.

& Publishing reservations incurs high overhead for reader due to
memory fences.

Problem 2: Uneven overhead

Although threads reclaim infrequently, readers publish reservations
frequently (eagerly), incurring high overhead.

Multicore Lab, University of Waterloo 1/30/2026 32

Publish Reservations Reactively

Let readers maintain reservations locally and publish on demand to

reclaimers.

rec

Leverage posix signal based inter ping:pthread_kill()

process communication.

rdr

publish reservations:SignalHandler()

1/30/2026 33

Publish on Ping (POP)

1. Ping the reader to publish reservations, if any.
2. Wait for reservation to be published.

3. Scan and reclaim unreserved.

rec

1 In signal handler:

1. Publish reservations.

2. Indicate to reclaimer that reservation is
rublished.

Multicore Lab, University of Waterloo t 1/30/2026 34

Reader: Maintain reservagions
locally without publishing.

Millions ops./s

HazardPtrPOP: Search Tree Throughput

90,0 M
80,0 M
70,0 M
60,0 M
50,0 M
40,0 M
30,0 M
20,0 M
10,0 M

0,0K

100% UPDATES

—>«HP HPAsym <=#=HazardPtrPOP NR

o
-

Ve
==

A
=

2l

1

18 36 54 72 90 108 126 144 180 216 252 288

1.4x faster than HP and HPAsym

120,0 M

100,0 M

80,0 M

60,0 M

40,0 M

20,0 M

0,0K

10% UPDATES

—4—HP —<HPAsym <=@=HazardPtrPOP NR

o~

P
el
“Za

|«

RN
L\

1

18 36 54 72 90 108 126 144 180 216 252 288

s=agolaszTeil 1.8x faster than HP &
15% faster than HPAsym

Problem: EBR

Wait for rdr to go quiescent.

RetSet: RetSet: RetSet-
nl nl -l

n2 n?2
rdr may never go quiescent. Unbounded garbage.

rec

rdr

time

t 1/30/2026 36

EBR + HazardPtrPOP (EpochPOP)

recC
RetSet:
nl

Locally reserve nodes before accessing
like 1n HazardPtrPOP

Wait for some threshold time and then

ping to publish

RetSet: - RetSet:
nl ! nl
n2 ! .

' n3
‘v Reclaim unreserved nodes.

Publish current reservations

time

1/30/2026 37

Millions ops./s

EpochPOP: Search Tree Throughput

90,0 M
80,0 M
70,0 M
60,0 M
50,0 M
40,0 M
30,0 M
20,0 M
10,0 M

0,0K

100% UPDATES

—e—-EBR NR «=@=EpochPOP

/’/’:*

e

Ve

yad

1 18 36 54 72 90 108 126 144 180 216 252 288

120,0 M

100,0 M

80,0 M

60,0 M

40,0 M

20,0 M

0,0K

10% UPDATES

—e—-EBR NR «=@=EpochPOP

AT

P

be

1

18 36 54 72 90 108 126 144 180 216 252 288

Hthreads 1/30/2026 38

POP reduces Uneven Overhead in HP

& Publishing reservations on ping reduces uneven overhead on
readers in SMRs like Hazard Pointers [PPoPP 2025].

& Fast and backward compatible and also works with Hazard Eras.

& Local Node Reservations: solves the issue of unbounded garbage
in epoch-based reclamation (EBR).

1/30/2026 39

Problem 3

Deferred reclamation paradigm has drawbacks

1/30/2026

40

Deferred Reclamation & Batching

& Existing SMRs defer reclamation for safety and reclaim 1n batches
for performance.

& Trade-off: Memory footprint vs. performance.

& Interference with allocator performance [Amort. Freeing, PPOPP
‘24].

& Hinders memory overcommitment 1n virtualized data centers.

Problem3: Deferred reclamation has several downsides can we

reclaim immediately and yet be fast?

1/30/2026 41

Cache Events Precede Read-Reclaim Races

#1» Node* t = Top; t2
Seg fault

Node* next = t->next; 2 Top o
tl CAS(&Top, t, next) v

n4

t]» delete t;

Invalidate
Cl1 C2 Core

Top:&nd M Ack Top:&n3 1

How can we leverage the synchronization events at ERREEINE
cache level to resolve read-reclaim races in s %
programs?

Conditional Access (CA)

& A simple hardware extension utilizing hardware-software co-
design to capture cache-level synchronization events.

& Exposes these events to programs via a novel set of memory
access instructions, effectively resolving read-reclaim races.

1/30/2026 43

(I) Capture Cache Events

Tag Set: Tagged when accessed first time. AccessRevokedBit:

* subsequent invalidations indicate a » Initially clear & Set when any of the
possible read-reclaim race. tagged lines are invalidated or leave the
* Enables monitoring of possible read- cache.
reclaim race to the lines 1n Tag Set. Enables Recording of possible read-
TagBit: One bit per cache line. reclaim race events for tagged cache lines.
AccessRevokedBit:0 - 2 AccessRevokedBit:0
I T I T
I T I T

I T I T

1/30/2026 44

(II) Expose Cache Events to Programmers

cRead addr, dest untagOne addr

Atomically Remove Address from TagSet
Add addr to TagSet if not in TagSet.
If AccessRevokedBit 1s set, skip the
load, and set a processor flag to untagAll

indicate error to program. - Clear TagSet and AccessRevokedBit

Else do a normal load.

cWrite addr, v

Atomically
- If AccessRevokedBit 1s set or addr €

TagSet. Skip store and set a
PprocCessor ﬂag 1/30/2026 45

- Else do a normal store.

Conditional Access: Working Example

T2 fails any subsequent

tl" cRread(t) t2 cRead/cWrite

tl° cWrite(t, newdata)t2

AccessRevokedBit:0 Sa . AccessRevokedBit:1
C1 Invalidate 2 Core

t M| 1 Ack I 1

I O I 0

I O I/0

L1 Cache

1/30/2026 %)

Using Conditional Access

int pop () { #define CACHECK if CAFAIL then untagAll(); goto
while (true) { retry;
Node* t = Top;
if (t == nullptr) return EMPTY; int pop () {

Replace and Evaluate

retry:
Node* next = t->next; Node* t = CREAD(Top); CACHECK;
if (CAS(&Top, t, next)) { if (t == nullptr) untagAll();return EMPTY;
int res = t->data
delete t; Node* next = CREAD(t->next); CACHECK;
return res; CWRITE(&Top, next); CACHECK;
} int res = t->data
} delete t;
} untagAll();
return res; 1/30/2026 47

Conditional Access Prevents Read-Reclaim

Race rec rdl rd2
#define CACHECK if CAFAIL then untagAll(); goto AccessRevokedBits
retry;
0 1 1
int pop () {
retry:
rec* Node* t = CREAD(Top); CACHECK; rdl = rd2 TagSet

if (t == nullptr) untagAll();return EMPTY;
Top Top Top
Node* next = CREAD(t->next); CACHECK; rd2
rec © CWRITE(&Top, next); CACHECK; rdl
int res = t->data
delete t;
untagAll();
return res;

} 1/30/2026 48

Lazy List Throughput

UPDATE ONLY READ-ONLY
=CA --HE «HP -EBR LEAKY «CA ~HE +~HP -EBR LEAKY
2,0 M weA (SR 40 M
L1 stalls (ns) 3K /"" e
AR 3,0M e
8-‘ /%—.--—0
S 1,0M | ek 2,0 M /,./
2 / | 2 |L_—"
e e M T
el Sl 228K o e T |
1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 32

#threads 1/30/2026 49

Unreclaimed nodes

50K
40K
30K
20K
10K

Memory Consumption

Lazy List 100% updates.

4 3
CA

12
m HE

16 20
mHP mEBR LEAKY

24

28

1/30/2026

32

50

CA addresses downsides of deferred reclamation

& Conditional Access: a set of new memory access instructions
[IRBDIRSE202S]]:

& Key Idea: Leverage hardware-software codesign to capture cache
events and expose them to programmers to enable safe memory
reclamation.

& Sequential data structure like 1deal memory footprint along with
concurrent data structure like throughput.

1/30/2026 51

Three Problems Three Solutions

& Problem 1: Difficult to achieve several desirable properties
simultaneously. =2 Neutralization based reclamation

& Problem2: high uneven overhead in Hazard Pointers. > Publish
on Ping

& Problem3: Deferred reclamation paradigm has drawbacks. =
Conditional Access

Co-Designing with others layers of the system stack helps solve three

problems in safe memory reclamation.
What other problems such approaches can help with?

Thank You

Travel to HACDA Workshop 1n DISC 2025
1s funded by project HAR.S.H. (project no.
YII3TA-0560901), within the framework of
the National Recovery and Resilience Plan
“Greece 2.0” with funding from the
European Union — NextGenerationEU.

INSTITUTE OF COMPUTER SCIENCE

1/30/2026 53

	intro
	Διαφάνεια 1: Rethinking Memory Reclamation for Concurrent Data Structures
	Διαφάνεια 2: Modern Data Structures
	Διαφάνεια 3: Unsynchronized Reads/Traversals in concurrent data structures enable high scalability but Complicate Memory Management!
	Διαφάνεια 4: Example: LockFree Stack [RK Treiber, IBM, 1986]
	Διαφάνεια 5: Pop(): LockFree Stack [RK Treiber, IBM, 1986]
	Διαφάνεια 6: Problem: Read-Reclaim Race
	Διαφάνεια 7: Solution: Safe Memory Reclamation (SMR)
	Διαφάνεια 8: Key Aspect: UnlinkRetireReclaim

	literature
	Διαφάνεια 9: Popular SMR Algorithms
	Διαφάνεια 10: (I) EBR: Epoch Based Reclamation
	Διαφάνεια 11: Harris Michael List. 2K size. 100% updates
	Διαφάνεια 12: (2) HP : Hazard Pointers
	Διαφάνεια 13: Harris Michael List. 2K size. 100% updates
	Διαφάνεια 14
	Διαφάνεια 15: (II) HP : Complicated to Use
	Διαφάνεια 16: EBR : Easy to Use
	Διαφάνεια 17: Algorithms with one trade-off or Another
	Διαφάνεια 18: Three Problems Three Solutions
	Διαφάνεια 19: Problem 1

	nbr
	Διαφάνεια 20: Desirable Properties in SMRs
	Διαφάνεια 21: Neutralization Based Reclamation (NBR)
	Διαφάνεια 22: Key Components for Neutralization
	Διαφάνεια 23: Neutralization Process
	Διαφάνεια 24: NBR Usability
	Διαφάνεια 25: Search Tree Throughput with NBR
	Διαφάνεια 26: Observation in NBR
	Διαφάνεια 27: NBR+
	Διαφάνεια 28: Search Tree Throughput with NBR+
	Διαφάνεια 29: External Binary Search Tree
	Διαφάνεια 30

	POP
	Διαφάνεια 31: Problem 2
	Διαφάνεια 32: Reservations in Hazard Pointers
	Διαφάνεια 33: Publish Reservations Reactively
	Διαφάνεια 34: Publish on Ping (POP)
	Διαφάνεια 35: HazardPtrPOP: Search Tree Throughput
	Διαφάνεια 36: Problem: EBR
	Διαφάνεια 37: EBR + HazardPtrPOP (EpochPOP)
	Διαφάνεια 38: EpochPOP: Search Tree Throughput
	Διαφάνεια 39: POP reduces Uneven Overhead in HP

	CA
	Διαφάνεια 40: Problem 3
	Διαφάνεια 41: Deferred Reclamation & Batching
	Διαφάνεια 42: Cache Events Precede Read-Reclaim Races
	Διαφάνεια 43: Conditional Access (CA)
	Διαφάνεια 44: (I) Capture Cache Events
	Διαφάνεια 45: (II) Expose Cache Events to Programmers
	Διαφάνεια 46: Conditional Access: Working Example
	Διαφάνεια 47: Using Conditional Access
	Διαφάνεια 48: Conditional Access Prevents Read-Reclaim Race
	Διαφάνεια 49: Lazy List Throughput
	Διαφάνεια 50: Memory Consumption
	Διαφάνεια 51: CA addresses downsides of deferred reclamation
	Διαφάνεια 52: Three Problems Three Solutions
	Διαφάνεια 53: Thank You

