
Ajay Singh

Collaborators: Trevor Brown (University of Waterloo), Michael Spear

(Lehigh University) and Ali Mashtizadeh (University of Waterloo)

Rethinking Memory Reclamation for

Concurrent Data Structures

* Supported by the Hellenic Foundation for Research and Innovation (HFRI) under the "Second Call for HFRI

Research Projects to support Faculty Members and Researchers" (project number: 3684).

Modern Data Structures

Follow optimistic synchronization or non blocking paradigms.

Permit higher parallelism.

Widely adopted in open-source software (e.g., Meta’s Folly,
Linux Kernel).

Key Property: Unsynchronized Reads

Threads can read from a shared memory location while it is
being concurrently modified.

1/30/2026 2

“

”

Unsynchronized Reads/Traversals in concurrent

data structures enable high scalability but

Complicate Memory Management!

1/30/2026 3

Example: LockFree Stack [RK Treiber, IBM, 1986]

1/30/2026 4

class Node{int data; Node* next;};
Node* Top = nullptr;

void push (int data) {
Node* node = new Node(data);
while (true) {

Node* t = Top;
node->next = Top;
if (CAS(&Top, t, node))
break;

}
}

int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}

}

Top n1

n2

n3

n4

Pop(): LockFree Stack [RK Treiber, IBM, 1986]

1/30/2026 5

int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}

}

Top n1

n2

n3

n4

t

next

Unsynchronized read

Unsynchronized read

Works as long as the unlinked

node is not reclaimed

int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
delete t; // ???
return res;

}
}

}

Problem: Read-Reclaim Race

1/30/2026 6

t

T1

Top n3

n4

n5

n6

T2

t
T1 T2

T1
next

Top

n3

Seg fault

T1

Reader: does not know if any thread could

concurrently free the node it is accessing.

Reclaimer: does not know if any thread

can access the node it is trying to free.

T1 read-reclaim race due to unsynchronized reads!

Solution: Safe Memory Reclamation (SMR)

1/30/2026 7

Readers learn whether a node is

safe to access i.e. will not be

concurrently reclaimed.

Reclaimers learn whether the

node they have unlinked is safe

to be reclaimed, i.e., no thread

holds a reference to the node.

Synchronize readers and reclaimers to decide a safe time to

reclaim unlinked nodes thereby resolving errors due to read-

reclaim races.

Key Aspect: Unlink→Retire→Reclaim

1/30/2026 8

New() SMR

Reclaim()

Retire()Concurrent

Data Structures

Allocator

retired nodes: unlinked but not yet

reclaimed (garbage).

retire set (retSet): per thread set to

temporarily store retired nodes.

Popular SMR

Algorithms
Epoch Based Reclamation

Hazard Pointers

(I) EBR: Epoch Based Reclamation
Assumption:

Threads are Quiescent (do not access shared nodes) between two

consecutive data structures operations.

Entry Point: Operations start from an entry point in data structure, e.g.,

head in lists or root in trees.

All threads announce when they are quiescent.

Reclaimers wait for all threads to go quiescent at least once to

reclaim retired nodes.

1/30/2026 10

t1 t2

all nodes retired before t1 are

Safe to free after t2time

0,0K

200,0K

400,0K

600,0K

800,0K

1,0 M

1,2 M

1,4 M

1 18 36 54 72 90 108 126 144 180 216 252 288

Peak Memory Usage (KB)

NR EBR

Harris Michael List. 2K size. 100% updates

1/30/2026 11

0

2M

4M

6M

8M

10M

12M

1 18 36 54 72 90 108 126 144 180 216 252 288

Throughput (operations per second)

NR EBR

#threads

M
il

li
o

n
s

o
p

s.
/

s

p
ea

k
 m

e
m

o
ry

 (
k
b
)

Fast But Unbounded

Garbage

(2) HP : Hazard Pointers
Readers:

Reserve pointers to nodes before accessing.

Unreserve pointer after they finish accessing.

Reclaimers:

Scan all published reservations.

Reclaim all retired nodes that are not reserved.

1/30/2026 12

0,0K

100,0K

200,0K

300,0K

400,0K

500,0K

600,0K

700,0K

800,0K

900,0K

1,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

Peak Memory Usage (KB)

NR HP

Harris Michael List. 2K size. 100% updates

0,0K

2,0 M

4,0 M

6,0 M

8,0 M

10,0 M

12,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

Throughput (operations/second)

NR HP

1/30/2026 13

~5x

#threads

M
il

li
o

n
s

o
p

s.
/

s

p
ea

k
 m

e
m

o
ry

 (
k
b
)

Bounds Garbage

But Slow

1/30/2026 14

• Epoch Based Reclamation: Fast but does not bound garbage

• Hazard Pointers Reclamation: Bounds garbage but not fast

• Ease of Use?

(II) HP : Complicated to Use

Identifying hazardous accesses!

Correctly reserving:

Write pointer at SWMR location.

Memory Fence

Validate reserved pointer.

Unreserve when operation exits.

What if validation fails?

1/30/2026 15

int pop () {
while (true) {

Node* t = Top;
if (t == nullptr) {

unprotect();
return EMPTY;

}
protect(t);
if (t != Top) {

unprotect();
continue;

}
Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
retire t;
unprotect();
return res;

}}}

announce

validate

mfence

EBR : Easy to Use

Announce quiescence:

startOp():

endOp():

1/30/2026Multicore Lab, University of Waterloo 16

int pop () {
startOp();
while (true) {

Node* t = Top;
if (t == nullptr) {

endOp();
return EMPTY;

}
Node* next = t->next;
if (CAS(&Top, t, next)) {

int res = t->data
retire t;
endOp();
return res;

}}}

Algorithms with one trade-off or Another

Pointer Reservation: HP, PTB, HP++

Epoch Reservation: IBR, HE

Epoch Based: EBR, RCU, DEBRA

Optimistic Access: OA, AOA, FA, VBR

Hybrid: TS, FS, Cadence

1/30/2026 17

Per-read overhead

Unbounded garbage

Custom allocator & change in

memory layout.

Compiler or architecture dependent

Change in memory layout of nodes &

Weaker Bound on Garbage.

Three Problems Three Solutions

Problem 1: Difficult to achieve several desirable properties

simultaneously. → Neutralization based reclamation

Problem2: high uneven overhead in Hazard Pointers. → Publish

on Ping

Problem3: Deferred reclamation paradigm has drawbacks. →

Conditional Access

1/30/2026 18

Problem 1
Difficult to achieve several desirable properties simultaneously.

1/30/2026 19

Performance
Bounded
Garbage

Wide
Applicability

Usability

Desirable Properties in SMRs

1/30/2026 20

Problem1: No algorithm satisfies all key desirable properties.

Neutralization Based Reclamation (NBR)

Threads follow a neutralization process.

A reclaimer, before reclaiming nodes, neutralizes all readers.

A neutralized reader either :

Discards its references, if it hasn’t done any updates yet, or

Must have reserved the references, if it has executed updates.

After neutralizing all readers, a reclaimer:

Scans all reservations, if any.

Reclaims all node not reserved by any reader.
1/30/2026 21

T1

T2

SignalHandler()

pthread_kill()

Sigsetjmp()

Siglongjmp()

Data Structure Operation

Set of nodes needed to

execute updates are known

beforehand.

Threads can restart from an

entry point in read phase

discarding their current

references.

read phase update phase

(I) Posix Signals (II) Access-Aware Data Structure

Key Components for Neutralization

1/30/2026 22

Neutralization Process

1/30/2026 23

Data Structure Operation

Checkpoint before read phase starts

rec

rdr

reserve:

<n2>

…

retSet:

<n2>

<n6>

…

Discards all references to retired nodes

in reclaimer’ retire set and restarts

Reserve nodes before update phase starts

Neutralization resolves read-reclaim races.

time

Cannot restart but will only access

reserved references.

NBR Usability
NBR Interface:

CHECKPOINT()

BeginReadPhase()

EndReadPhase(…)

Retire(…)

Identify read phase

Identify write phase and all

nodes needed beforehand.

1/30/2026 24

void operation(int key) {
 while (true) {
 CHECKPOINT();
 BeginReadPhase();
 Node* pred = head;
 Node* curr = pred->next;
 while (curr->key < k) {
 pred = curr;
 curr = curr->next;
 }

 EndReadPhase(pred, curr);

 LOCK(&pred->lock); LOCK(&curr->lock);
 if (validate(pred, curr)) {
 // do update
 }
 UNLOCK(&curr->lock); UNLOCK(&pred->lock);

}

Search Tree Throughput with NBR

1/30/2026 25

0

20

40

60

80

18 54 90 126 162 198 234

UPDATE ONLY WORKLOAD

NBR NR

#threads

M
il

li
o

n
s

o
p

s.
/

s

Overhead: Sending too many

neutralizing signals

O(N^2) signals for N threads to

reclaim exactly once.

Can we reduce the number of

signals and thus eliminate signaling

overhead ?

2.2x slower

Observation in NBR

1/30/2026 26

retSet:

n2

n6

…

rec1

rdr

t`

guarantee: rdr discards all unreserved

references to nodes in retSet of rec1.

rec2
retSet:

n3

n4

rec2 can reclaim nodes retired before

t` without sending signals of its own.

time

Stronger guarantee: rdr discards all

unreserved references to nodes retired

before t`.

When one thread sends neutralizing signals all other threads could reclaim

without sending signals of their own.

NBR+
Low and High Watermark: Thresholds for a thread’s retSet size
to trigger reclamation.

At High Watermark:

Send neutralization signals.

Announces start and finish times of the neutralization process.

At Low Watermark:

Monitor if any thread has started and finished neutralization.

Reclaim unreserved nodes up to the Low Watermark without sending
signals.

1/30/2026 27

Search Tree Throughput with NBR+

1/30/2026 28

0

20

40

60

80

18 36 54 72 90 108 126 144 162 180 198 216 234 252

UPDATE ONLY WORKLOAD

NBR NBR+ NR
Only 28% slower

#threads

M
il

li
o

n
s

o
p

s.
/

s

External Binary Search Tree

1/30/2026 29

0

20

40

60

80

100

120

24 48 72 96 120144168192216240252

100% UPDATES.

debra hazardptr ibr

rcu nbr+ none

qsbr

0

50

100

150

200

24 48 72 96 120144168192216240252

10% UPDATES

debra hazardptr ibr

rcu nbr+ none

qsbr

M
il

li
o

n
s

o
p

s.
/

s

#threads

NBR solves SMR without compromising on desirable properties.

Leverages POSIX signals.

1/30/2026 30

Problem 2
High uneven overhead in Hazard Pointers

1/30/2026 31

Reservations in Hazard Pointers

Readers: before accessing, reserve nodes and publish reservations.

Publishing reservations incurs high overhead for reader due to

memory fences.

1/30/2026Multicore Lab, University of Waterloo 32

Problem 2: Uneven overhead

Although threads reclaim infrequently, readers publish reservations

frequently (eagerly), incurring high overhead.

Publish Reservations Reactively

1/30/2026 33

Let readers maintain reservations locally and publish on demand to

reclaimers.

Leverage posix signal based inter

process communication.

publish reservations:SignalHandler()

ping:pthread_kill()

rec

rdr

Reader: Maintain reservations

locally without publishing.

Publish on Ping (POP)

1/30/2026Multicore Lab, University of Waterloo 34

resSet:

…

rec

rdr

1. Ping the reader to publish reservations, if any.

2. Wait for reservation to be published.

3. Scan and reclaim unreserved.

In signal handler:

1. Publish reservations.

2. Indicate to reclaimer that reservation is

published.

retSet:

n2

n6

…

t

HazardPtrPOP: Search Tree Throughput

0,0K

10,0 M

20,0 M

30,0 M

40,0 M

50,0 M

60,0 M

70,0 M

80,0 M

90,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

100% UPDATES

HP HPAsym HazardPtrPOP NR

1/30/2026 35

1.4x faster than HP and HPAsym
#threads

0,0K

20,0 M

40,0 M

60,0 M

80,0 M

100,0 M

120,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

10% UPDATES

HP HPAsym HazardPtrPOP NR

1.8x faster than HP &

15% faster than HPAsym

M
il

li
o

n
s

o
p

s.
/

s

Problem: EBR

1/30/2026 36

rec

rdr

time

RetSet:

n1

t

RetSet:

n1

n2

RetSet:

n1

n2

...

Wait for rdr to go quiescent.

rdr may never go quiescent. Unbounded garbage.

EBR + HazardPtrPOP (EpochPOP)

1/30/2026 37

rec

rdr

time

RetSet:

n1

t

RetSet:

n1

n2

Wait for some threshold time and then

ping to publish

Publish current reservations

Locally reserve nodes before accessing

like in HazardPtrPOP

RetSet:

n1

n2

n3

Reclaim unreserved nodes.

EpochPOP: Search Tree Throughput

0,0K

10,0 M

20,0 M

30,0 M

40,0 M

50,0 M

60,0 M

70,0 M

80,0 M

90,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

100% UPDATES

EBR NR EpochPOP

1/30/2026 38#threads

0,0K

20,0 M

40,0 M

60,0 M

80,0 M

100,0 M

120,0 M

1 18 36 54 72 90 108 126 144 180 216 252 288

10% UPDATES

EBR NR EpochPOP

Similar performance as EBR

M
il

li
o

n
s

o
p

s.
/

s

POP reduces Uneven Overhead in HP
Publishing reservations on ping reduces uneven overhead on

readers in SMRs like Hazard Pointers [PPoPP 2025].

Fast and backward compatible and also works with Hazard Eras.

Local Node Reservations: solves the issue of unbounded garbage

in epoch-based reclamation (EBR).

1/30/2026 39

Problem 3
Deferred reclamation paradigm has drawbacks

1/30/2026 40

Deferred Reclamation & Batching

Existing SMRs defer reclamation for safety and reclaim in batches

for performance.

Trade-off: Memory footprint vs. performance.

Interference with allocator performance [Amort. Freeing, PPOPP

‘24].

Hinders memory overcommitment in virtualized data centers.

1/30/2026 41

Problem3: Deferred reclamation has several downsides can we

reclaim immediately and yet be fast?

C2

… I

… I

… I

Core

L1 Cache

C1

… I

… I

… I

Node* t = Top;
...
Node* next = t->next;
CAS(&Top, t, next)
...
delete t;

Cache Events Precede Read-Reclaim Races

1/30/2026 42

t1 t2

t1

Top:&n3 S Top:&n3 STop:&n3 M

Top n3

n4

Top:&n4 M

Invalidate

Ack

t1

t2

Top:&n3 I

n3

Seg fault

How can we leverage the synchronization events at

cache level to resolve read-reclaim races in

programs?

Conditional Access (CA)

A simple hardware extension utilizing hardware-software co-

design to capture cache-level synchronization events.

Exposes these events to programs via a novel set of memory

access instructions, effectively resolving read-reclaim races.

1/30/2026 43

(I) Capture Cache Events

1/30/2026 44

C1

… I

… I

… I

C2

… I

… I

… I

T

T

T

T

T

T

AccessRevokedBit:0 AccessRevokedBit:0

Tag Set: Tagged when accessed first time.

• subsequent invalidations indicate a

possible read-reclaim race.

• Enables monitoring of possible read-

reclaim race to the lines in Tag Set.

AccessRevokedBit:

• Initially clear & Set when any of the

tagged lines are invalidated or leave the

cache.

• Enables Recording of possible read-

reclaim race events for tagged cache lines.TagBit: One bit per cache line.

(II) Expose Cache Events to Programmers

1/30/2026 45

cRead addr, dest

Atomically

- Add addr to TagSet if not in TagSet.

- If AccessRevokedBit is set, skip the

load, and set a processor flag to

indicate error to program.

- Else do a normal load.

cWrite addr, v

Atomically
- If AccessRevokedBit is set or addr ∉

TagSet. Skip store and set a

processor flag.

- Else do a normal store.

untagOne addr

Remove Address from TagSet

untagAll

- Clear TagSet and AccessRevokedBit

Conditional Access: Working Example

1/30/2026 46

C1 C2

… I

… I

… I

Core

L1 Cache

AccessRevokedBit:0 AccessRevokedBit:0

… I

… I

… I

0

0

0

0

0

0

Invalidate

Ackt S 1 t S 1t M 1 … I 1

AccessRevokedBit:1

cRread(t)
. . .
cWrite(t, newdata)
. . .

t1 t2

t1 t2

T2 fails any subsequent

cRead/cWrite

Using Conditional Access

1/30/2026 47

#define CACHECK if CAFAIL then untagAll(); goto
retry;

int pop () {
retry:

Node* t = CREAD(Top); CACHECK;
if (t == nullptr) untagAll();return EMPTY;

Node* next = CREAD(t->next); CACHECK;
CWRITE(&Top, next); CACHECK;
int res = t->data
delete t;
untagAll();
return res;

}

int pop () {
while (true) {
Node* t = Top;
if (t == nullptr) return EMPTY;

Node* next = t->next;
if (CAS(&Top, t, next)) {
int res = t->data
delete t;
return res;
}

}
}

Replace and Evaluate

Conditional Access Prevents Read-Reclaim

Race

1/30/2026 48

#define CACHECK if CAFAIL then untagAll(); goto
retry;

int pop () {
retry:

Node* t = CREAD(Top); CACHECK;
if (t == nullptr) untagAll();return EMPTY;

Node* next = CREAD(t->next); CACHECK;
CWRITE(&Top, next); CACHECK;
int res = t->data
delete t;
untagAll();
return res;

}

rd1rec

rd2

0

AccessRevokedBits

0 0

TagSet

Top Top Top

rec rd1

rd2

1 1

rec rd1 rd2

Lazy List Throughput

1/30/2026 49#threads

th
ro

u
g
h

p
u

t

0,0K

500,0K

1,0 M

1,5 M

2,0 M

1 4 8 12 16 20 24 28 32

UPDATE ONLY

CA HE HP EBR LEAKY

L1 stalls (ns) 3K

16K

22-28K
0,0K

1,0 M

2,0 M

3,0 M

4,0 M

1 4 8 12 16 20 24 28 32

READ-ONLY

CA HE HP EBR LEAKY

Memory Consumption

1/30/2026 50

0

10K

20K

30K

40K

50K

1 4 8 12 16 20 24 28 32

Lazy List 100% updates.

CA HE HP EBR LEAKY

U
n

re
cl

a
im

ed
 n

o
d

es

CA addresses downsides of deferred reclamation

Conditional Access: a set of new memory access instructions

[IPDPS ‘2023].

Key Idea: Leverage hardware-software codesign to capture cache

events and expose them to programmers to enable safe memory

reclamation.

Sequential data structure like ideal memory footprint along with

concurrent data structure like throughput.

1/30/2026 51

Three Problems Three Solutions

Problem 1: Difficult to achieve several desirable properties

simultaneously. → Neutralization based reclamation

Problem2: high uneven overhead in Hazard Pointers. → Publish

on Ping

Problem3: Deferred reclamation paradigm has drawbacks. →

Conditional Access

1/30/2026 52

Co-Designing with others layers of the system stack helps solve three

problems in safe memory reclamation.

What other problems such approaches can help with?

Thank You

Travel to HACDA Workshop in DISC 2025

is funded by project HAR.S.H. (project no.

YΠ3TA-0560901), within the framework of

the National Recovery and Resilience Plan

“Greece 2.0” with funding from the

European Union – NextGenerationEU.

1/30/2026 53

	intro
	Διαφάνεια 1: Rethinking Memory Reclamation for Concurrent Data Structures
	Διαφάνεια 2: Modern Data Structures
	Διαφάνεια 3: Unsynchronized Reads/Traversals in concurrent data structures enable high scalability but Complicate Memory Management!
	Διαφάνεια 4: Example: LockFree Stack [RK Treiber, IBM, 1986]
	Διαφάνεια 5: Pop(): LockFree Stack [RK Treiber, IBM, 1986]
	Διαφάνεια 6: Problem: Read-Reclaim Race
	Διαφάνεια 7: Solution: Safe Memory Reclamation (SMR)
	Διαφάνεια 8: Key Aspect: UnlinkRetireReclaim

	literature
	Διαφάνεια 9: Popular SMR Algorithms
	Διαφάνεια 10: (I) EBR: Epoch Based Reclamation
	Διαφάνεια 11: Harris Michael List. 2K size. 100% updates
	Διαφάνεια 12: (2) HP : Hazard Pointers
	Διαφάνεια 13: Harris Michael List. 2K size. 100% updates
	Διαφάνεια 14
	Διαφάνεια 15: (II) HP : Complicated to Use
	Διαφάνεια 16: EBR : Easy to Use
	Διαφάνεια 17: Algorithms with one trade-off or Another
	Διαφάνεια 18: Three Problems Three Solutions
	Διαφάνεια 19: Problem 1

	nbr
	Διαφάνεια 20: Desirable Properties in SMRs
	Διαφάνεια 21: Neutralization Based Reclamation (NBR)
	Διαφάνεια 22: Key Components for Neutralization
	Διαφάνεια 23: Neutralization Process
	Διαφάνεια 24: NBR Usability
	Διαφάνεια 25: Search Tree Throughput with NBR
	Διαφάνεια 26: Observation in NBR
	Διαφάνεια 27: NBR+
	Διαφάνεια 28: Search Tree Throughput with NBR+
	Διαφάνεια 29: External Binary Search Tree
	Διαφάνεια 30

	POP
	Διαφάνεια 31: Problem 2
	Διαφάνεια 32: Reservations in Hazard Pointers
	Διαφάνεια 33: Publish Reservations Reactively
	Διαφάνεια 34: Publish on Ping (POP)
	Διαφάνεια 35: HazardPtrPOP: Search Tree Throughput
	Διαφάνεια 36: Problem: EBR
	Διαφάνεια 37: EBR + HazardPtrPOP (EpochPOP)
	Διαφάνεια 38: EpochPOP: Search Tree Throughput
	Διαφάνεια 39: POP reduces Uneven Overhead in HP

	CA
	Διαφάνεια 40: Problem 3
	Διαφάνεια 41: Deferred Reclamation & Batching
	Διαφάνεια 42: Cache Events Precede Read-Reclaim Races
	Διαφάνεια 43: Conditional Access (CA)
	Διαφάνεια 44: (I) Capture Cache Events
	Διαφάνεια 45: (II) Expose Cache Events to Programmers
	Διαφάνεια 46: Conditional Access: Working Example
	Διαφάνεια 47: Using Conditional Access
	Διαφάνεια 48: Conditional Access Prevents Read-Reclaim Race
	Διαφάνεια 49: Lazy List Throughput
	Διαφάνεια 50: Memory Consumption
	Διαφάνεια 51: CA addresses downsides of deferred reclamation
	Διαφάνεια 52: Three Problems Three Solutions
	Διαφάνεια 53: Thank You

