
Concurrent Augmented Trees*

PANAGIOTA FATOUROU
Foundat ion for Research and Technology – Hellas, Inst itute of Computer Science

University of Crete, Department of Computer Science, Greece

* Supported by the Hellenic Foundation for Research and Innovation (HFRI) under the "Second Call for HFRI Research Projects to
support Faculty Members and Researchers" (project number: 3684).

ApPLIED, June 2025

Joint work with ERIC RUPPERT, York University, Canada
DISC 2024 (Best Paper Award)

Main Result

➢Simple to implement using single-word CAS

➢General: can handle any augmentation

➢Efficient: queries as fast as in sequential system,

➢minimal overhead for updates

➢Wait-free: additional work for augmentation is wait-free

➢Snapshots of tree easily support complex queries

Technique to augment lock-free search trees in order
to support more operations.

Panagiota Fatourou & Eric Ruppert 2

Leaf-Oriented BST

Set = {A, C, E, G, L}.

Properties

• One leaf for each key in set

• Internal nodes used for
 routing

• The tree is full

• BST Property K

keys < K keys  K

How TO SUPPORT
AUGMENTATION ON TOP OF

A CONCURRENT BST?

3Panagiota Fatourou & Eric Ruppert

AUGMENTATION

Augmentation: Each node stores
the number of leaves in its
subtree.

WHAT CAN WE DO WITH AN
AUGMENTED TREE?

1 1

11

3 2

2

5

1

Order-statistic tree

4Panagiota Fatourou & Eric Ruppert

1 1

11

3 2

2

5

1

AUGMENTATION

5

SIZE() → 5

WHAT KIND OF
FUNCTIONALITY DO WE

WANT TO SUPPORT?

Panagiota Fatourou & Eric Ruppert

SIZE(): Returns the size
of the implemented set.
➢ O(1) time

1 1

11

3 2

2

5

1

AUGMENTATION

6

Select(4) → G

Panagiota Fatourou & Eric Ruppert

SELECT(i): Returns the i-th
largest element in the set.
➢ O(h) time

WHAT KIND OF
FUNCTIONALITY DO WE

WANT TO SUPPORT?

1 1

11

3 2

2

5

1

AUGMENTATION

7

Rank(E) → 3

Panagiota Fatourou & Eric Ruppert

RANK(x): Returns i if x is the
i-th largest element in the set.
➢ O(h) time

WHAT KIND OF
FUNCTIONALITY DO WE

WANT TO SUPPORT?

1 4

33

8 6

5

14

3

EXAMPLES OF AUGMENTATION

8

TotalSum() → 14

Panagiota Fatourou & Eric Ruppert

• Any associative aggregation operator
o sum, minimum, maximum, product, etc.

• Augment the tree to filter values
o obtain the aggregate of all odd values

within a range.
• Interval tree
o Stores a set of intervals in a balanced

BST sorted by the left endpoints
o Each node stores the maximum right

endpoint of any interval in the node’s
subtree

o Determine whether any interval in the
BST includes a given point in logarithmic
time

Keys have weights; each node
stores sum of subtree’s weights.

Weigth(< L) →11

EXAMPLES OF AUGMENTATION

9

Many other ways to augment a BST.
• For database of employees, number of women in subtree.
• How many employees' salaries are more than 100,000

euros/year?
• Store min key, max key, and smallest gap in subtree.
• Find two closest keys in the set.

Key Property of Augmentations
Values of a node’s new field(s) can be computed
from information in the node and its children.

Panagiota Fatourou & Eric Ruppert

APPLICATIONS OF AUGMENTATION

10

Augmented BSTs are basis of
building many other data
structures.
• Interval tree
• Tango tree
• Measure tree
• Priority search tree
• Segment tree
• Link/cut tree
• several other data

structures

Lots of applications in
• computational geometry
• databases
• graph algorithms
• many other fields

Panagiota Fatourou & Eric Ruppert

Augmentation is sufficiently
important to warrant a chapter
in classical algorithms textbooks.

Main Result

11

Technique to augment concurrent trees

Panagiota Fatourou & Eric Ruppert

Example: Lock-free Binary Search Tree
• Can handle any augmentation.
• Adds only O(height) steps to insert, delete.
• Supports simple snapshots.
• Wait-free queries run sequential code.
• Based on BST of Ellen et al. from PODC 2014.

Model

➢ Asynchronous system.

➢ Communication by accessing
shared variables.

➢ Threads may be delayed
indefinitely (or crash).

Threads

Shared Variables

p1 p2 pn

Correctness - Linearizability
Each operation appears as if it has
been executed atomically at some
point in its execution interval.

Progress – Lock Freedom
Some thread makes progress

12Panagiota Fatourou & Eric Ruppert

Wait-Freedom
Every non-crashed thread makes progress

Tree Updates – Insert in Leaf-Oriented Tree

13

Insert(J)

➢ Search for J

➢ Remember leaf and its parent

Panagiota Fatourou & Eric Ruppert

Insert in Leaf-Oriented Tree (Sequentially)

14

Insert(J)

➢ Search for J

➢ Remember leaf and its parent

➢ Create new leaf, replacement
 leaf and one internal node

Panagiota Fatourou & Eric Ruppert

Insert in Leaf-Oriented Tree (Sequentially)

15

Insert(J)

➢ Search for J

➢ Remember leaf and its parent

➢ Create new leaf, replacement
 leaf and one internal node

➢ Update pointer

X

Panagiota Fatourou & Eric Ruppert

Updates on Augmented Trees

16Panagiota Fatourou & Eric Ruppert

Challenges of Concurrency

17

➢ An update changes fields of many nodes along a
path

➢ All changes must appear atomic
➢ Queries traverse a path while concurrent

updates change it
➢ Contention: all updates need to modify root’s

size

Panagiota Fatourou & Eric Ruppert

Key Ideas

18

Node stores pointer to current
version of augmented field.

1 1

11

3 2

2

5

1

Panagiota Fatourou & Eric Ruppert

Key Ideas: Multiple Versions of Augmentation fields

Panagiota Fatourou & Eric Ruppert 19

Old versions can still be used by queries in progress

Key Ideas: Version Tree

20

• Old versions can still be
used by queries in
progress.

• All fields of
VersionNodes are
immutable.

Panagiota Fatourou & Eric Ruppert

Node VersionNode

Key Ideas: Multiple Versions of Augmentation fields

Panagiota Fatourou & Eric Ruppert 21

VersionTrees provide consistent views

Accessing root’s version provides snapshot of version tree.
Versions also store keys to direct searches.
Supports any sequential query operation.
Old versions are unreachable when no longer needed.

Key Ideas

Panagiota Fatourou & Eric Ruppert 22

6

21

11

21

33

1 1

Updating Versions
After Insert or Delete, Propagate
changes up to root.

➢ Fields of VersionNodes never
change once it is attached to
tree.

➢ Propagation is wait-free.

Panagiota Fatourou & Eric Ruppert 23

Propagate
for each Node x on path to
root do (at most) twice
// Refresh x’s version

create new VersionNode v
v.left := x.left.version
v.right := x.right.version
compute contents of v
CAS x.version to point to v

X 7

Propagating an Insert

Panagiota Fatourou & Eric Ruppert 24

Propagating an Insert

Panagiota Fatourou & Eric Ruppert 25

Propagating an Insert

Panagiota Fatourou & Eric Ruppert 26

Propagating an Insert

Panagiota Fatourou & Eric Ruppert 27

Double Refresh

Refresh on each node x uses
CAS to update x’s version.

What if the CAS fails?

➢ Try again

What if the CAS fails again?

➢ Stop; someone else’s refresh
has propagated your change
to x.

Cooperation and Contention

• Updates are propagated
cooperatively

• One change can propagate many
operations together

• All update operations perform CAS
on root

• BUT not all have to succeed

Panagiota Fatourou & Eric Ruppert 28

Algorithm

Insert or Delete operation

• Run original algorithm to perform
update

• Refresh each ancestor (at most)
twice

➢ Adds O(h) to step complexity of
updates.

Query operation

• Read Root.version to get
snapshot of version tree

• Run standard sequential
algorithm on that snapshot

➢ Step complexity same as
sequential query time.

Panagiota Fatourou & Eric Ruppert 29

Proving Correctness

30

Key Goal
• Define linearization points for updates, so that the Version

tree rooted at Root.version reflects all updates linearized
so far.

➢ Linearize an update when its info has been propagated to
Root Node.

Panagiota Fatourou & Eric Ruppert

We linearize a query at the time it reads Root.version to get a
snapshot of the Version tree.

Proving Correctness

31

Linearizability
• Define arrival point of each update at each node on its leaf-to-

root path.

• Invariant: tree rooted at x.version reflects all operations that
have arrived at x (done in order of their arrival points).

• Linearization point = arrival point at Root.

• Show that propagate ensures all operations arrive at Root.

Panagiota Fatourou & Eric Ruppert

Improving Query Step Complexity

• Let n = |S|.
• Join can be done in O(log n) time.
• Update takes additional O(height log n) steps.
• Queries take O(log n) steps, even if tree height is n.

Version of x stores pointer
to root of RBT containing all
elements in x’s subtree.

Refresh:
• Read RBTs pointed to by

x.left.version &
x.right.version

• Join them into one RBT
• Use CAS to store root of

new RBT in x.version

32Panagiota Fatourou & Eric Ruppert

Lock-free BST augmented with size
 [Kokorin, Alistarh, Aksenov IPDPS 2024]

• Each operation must join a queue at each node and help all those ahead.

• Not generalizable to other augmentations.

• ((#processes) height) steps per operation.

Lock-based tree augmentation
 [Sela, Petrank DISC 2024]

•Much work on taking snapshots of shared data structures

• They are more complicated, and have slower queries

• Those based on multiversioning have complex GC

Double refresh has been used in other ways
 [Afek, Dauber, Touitou 1995]

Comparison to Related Work

33Panagiota Fatourou & Eric Ruppert

Conclusion
Scheme for augmenting concurrent trees

✓ is simple to implement

✓ works for any augmentation

✓ adds O(height) to step complexity of updates

✓ preserves lock-freedom or wait-freedom of updates

✓ has wait-free, fast queries

✓ supports simple snapshots

35Panagiota Fatourou & Eric Ruppert

Thank you!

Panagiota Fatourou & Eric Ruppert 36

https://persist-project.gr/

faturu@csd.uoc.gr
www.ics.forth.gr/~faturu/

mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/
http://www.ics.forth.gr/~faturu/

	Διαφάνεια 1: Concurrent Augmented Trees*
	Διαφάνεια 2: Main Result
	Διαφάνεια 3: Leaf-Oriented BST
	Διαφάνεια 4: AUGMENTATION
	Διαφάνεια 5: AUGMENTATION
	Διαφάνεια 6: AUGMENTATION
	Διαφάνεια 7: AUGMENTATION
	Διαφάνεια 8: EXAMPLES OF AUGMENTATION
	Διαφάνεια 9: EXAMPLES OF AUGMENTATION
	Διαφάνεια 10: APPLICATIONS OF AUGMENTATION
	Διαφάνεια 11: Main Result
	Διαφάνεια 12: Model
	Διαφάνεια 13: Tree Updates – Insert in Leaf-Oriented Tree
	Διαφάνεια 14: Insert in Leaf-Oriented Tree (Sequentially)
	Διαφάνεια 15: Insert in Leaf-Oriented Tree (Sequentially)
	Διαφάνεια 16: Updates on Augmented Trees
	Διαφάνεια 17: Challenges of Concurrency
	Διαφάνεια 18: Key Ideas
	Διαφάνεια 19: Key Ideas: Multiple Versions of Augmentation fields
	Διαφάνεια 20: Key Ideas: Version Tree
	Διαφάνεια 21: Key Ideas: Multiple Versions of Augmentation fields
	Διαφάνεια 22: Key Ideas
	Διαφάνεια 23: Updating Versions
	Διαφάνεια 24: Propagating an Insert
	Διαφάνεια 25: Propagating an Insert
	Διαφάνεια 26: Propagating an Insert
	Διαφάνεια 27: Propagating an Insert
	Διαφάνεια 28: Double Refresh
	Διαφάνεια 29: Algorithm
	Διαφάνεια 30: Proving Correctness
	Διαφάνεια 31: Proving Correctness
	Διαφάνεια 32: Improving Query Step Complexity
	Διαφάνεια 33: Comparison to Related Work
	Διαφάνεια 35: Conclusion
	Διαφάνεια 36: Thank you!

