Concurrent Augmented Trees’

PANAGIOTA FATOUROU

Foundation for Research and Technology — Hellas, Institute of Computer Science

University of Crete, Department of Computer Science, Greece

Joint work with ERIC RUPPERT, York University, Canada
DISC 2024 (Best Paper Award)

ApPLIED, June 2025

Technique to augment lock-free search trees in order
to support more operations.

» Simple to implement using single-word CAS

» General: can handle any augmentation

» Efficient: queries as fast as in sequential system,

» minimal overhead for updates

» Wait-free: additional work for augmentation is wait-free

»Snapshots of tree easily support complex queries

Properties
® One leaf for each key in set
* Internal nodes used for

routing
e The tree is full
e BST Property

How TO SUPPORT

AUGMENTATION ON TOP OF
A CONCURRENT BST?

C

Set={A,C E, G, L}

WHAT CAN WE DO WITH AN
AUGMENTED TREE?

Augmentation: Each node stores
the number of leaves in its
subtree.

1

1

E

Order-statistic tree

s)
SIZE() > 5 |F

WHAT KIND OF 3 2
FUNCTIONALITY DO WE B H
WANT TO SUPPORT? 1 2 1 1

SIZE(): Returns the size : :

of the implemented set.
> 0O(1) time

Select(4) > G 5

WHAT KIND OF
FUNCTIONALITY DO WE B H
WANT TO SUPPORT?

SELECT(i): Returns the i-th 1 1
largest element in the set. C =
» 0O(h) time

Rank(E) - 3
WHAT KIND OF 3

FUNCTIONALITY DO WE B
WANT TO SUPPORT? 1 2

RANK(x): Returns i if x is the 1
i-th largest element in the set.
» 0O(h) time

* Any associative aggregation operator < N1a

o sum, minimum, maximum, product, etc. TotalSum() > 14 [Weigth(<L) >11

* Augment the tree to filter values @
o obtain the aggregate of all odd values

within a range.

* Interval tree 3 5 3 3

o Stores a set of intervals in a balanced A D G L

BST sorted by the left endpoints

o Each node stores the maximum right 1 4

B H

endpoint of any interval in the node’s C E
subtree

o Determine whether any interval in the
BST includes a given point in logarithmic
time

Keys have weights; each node
stores sum of subtree’s weights.

Many other ways to augment a BST.
* For database of employees, number of women in subtree.

* How many employees' salaries are more than 100,000
euros/year?

* Store min key, max key, and smallest gap in subtree.

* Find two closest keys in the set.

Key Property of Augmentations
Values of a node’s new field(s) can be computed
from information in the node and its children.

Augmented BSTs are basis of
building many other data
structures.

Handbook of
Data Structures
and Applications
Second Editior

Interval tree

ALGCORITHNMS

Tango tree Augmentation is sufficiently
Measure tree important to warrant a chapter
Priority search tree Lots (jn classical algorithms textbooks.
Segment tree e computational geometry

Link/cut tree * databases

several other data e graph algorithms

structures * many other fields

Technique to augment concurrent trees

Example: Lock-free Binary Search Tree

e Can handle any augmentation.

* Adds only O(height) steps to insert, delete.

e Supports simple snapshots.

* Wait-free queries run sequential code.

* Based on BST of Ellen et al. from PODC 2014.

> Asynchronous system.

» Communication by accessing
shared variables.

> Threads may be delayed
indefinitely (or crash).

B 120l Correctness - Linearizability
Progress — Lock Freedom Each operation appears as if it has
been executed atomically at some
point in its execution interval.

Some thread makes progress
Wait-Freedom
Every non-crashed thread makes progress

Insert(J)
» Search for J

» Remember leaf and its parent

Insert(J)
» Search for J
» Remember leaf and its parent

» Create new leaf, replacement
leaf and one internal node

Insert(J)

» Search forJ Insert(J)

> Remember leaf and its parent > al

» Create new leaf, replacement 3 5 g X“‘L ”
leaf and one internal node

» Update pointer C E J L

Insert(J)

5+1=6

Insert(J)

H|{2+1=3

» An update changes fields of many nodes along a
path

» All changes must appear atomic

» Queries traverse a path while concurrent
updates change it

» Contention: all updates need to modify root’s
size

B+(3) H}(2)
)
OB & o e Bo e

ol e o) [E

Node stores pointer to current
version of augmented field.

156
VRN
513 7 @)
A y
/i@ VAN
1) TONED

Old versions can still be used by queries in progress

Insert(J)

Old versions can still be
used by queries in
progress.

All fields of
VersionNodes are
immutable.

VersionNode
L

2040

/ Insert(J)

B1(3) H] (2)°(3)
/‘
ab(1) [oh(2) [ch(1) (D[K(2)

foiEo oA =R

VersionTrees provide consistent views

Accessing root’s version provides snapshot of version tree.
Versions also store keys to direct searches.

Supports any sequential query operation.

Old versions are unreachable when no longer needed.

After Insert or Delete, Propagate
changes up to root.
Propagate
for each Node x on path to
root do (at most) twice
// Refresh x’s version
create new VersionNode v
v.left :=x.left.version
v.right :=x.right.version
compute contents of v
CAS x.version to pointto v

» Fields of VersionNodes never
change once it is attached to
tree.

» Propagation is wait-free.

J_

ch(1) |E]

Refresh(H
L+(1)

J_

b

D
ch(1) [E-

Ab(1) |D]

F/

(6) Refresh(F)
>

efresh

S

J_

@

(H)

GP(1) L-Wert(d)

L_

@

Refresh on each node x uses Cooperation and Contention

CAS to update x’s version. « Updates are propagated
What if the CAS fails? cooperatively
> Try again * One change can propagate many

operations together
What if the CAS fails again? > £
» Stop; someone else’s refresh

has propagated your change
to x. * BUT not all have to succeed

* All update operations perform CAS
on root

Insert or Delete operation Query operation

* Run original algorithm to perform * Read Root.version to get

update snapshot of version tree
» Refresh each ancestor (at most) * Run standard sequential
twice algorithm on that snapshot

> Adds O(h) to step complexity of > Step complexity same as
updates. sequential query time.

Key Goal

Define linearization points for updates, so that the Version

tree rooted at Root.version reflects all updates linearized
so far.

» Linearize an update when its info has been propagated to
Root Node.

We linearize a query at the time it reads Root.version to get a
snapshot of the Version tree.

Linearizability
* Define arrival point of each update at each node on its leaf-to-
root path.

* Invariant: tree rooted at x.version reflects all operations that
have arrived at x (done in order of their arrival points).

* Linearization point = arrival point at Root.

 Show that propagate ensures all operations arrive at Root.

Version of x stores pointer
to root of RBT containing all
elements in x’s subtree.

Refresh:

* Read RBTs pointed to by
x.left.version &
x.right.version

* Join them into one RBT

e Use CAS to store root of * Letn=]S].
new RBT in x.version e Join can be done in O(log n) time.

@

e Update takes additional O(height log n) steps.
e Queries take O(log n) steps, even if tree height is n.

Lock-free BST augmented with size
[Kokorin, Alistarh, Aksenov IPDPS 2024]
e Each operation must join a queue at each node and help all those ahead.

* Not generalizable to other augmentations.
* ((Hprocesses) height) steps per operation.

Lock-based tree augmentation
[Sela, Petrank DISC 2024]

* Much work on taking snapshots of shared data structures
* They are more complicated, and have slower queries
* Those based on multiversioning have complex GC

Double refresh has been used in other ways

[Afek, Dauber, Touitou 1995]

Scheme for augmenting concurrent trees

v’ is simple to implement

v works for any augmentation

v adds O(height) to step complexity of updates

v’ preserves lock-freedom or wait-freedom of updates
v" has wait-free, fast queries

v’ supports simple snapshots

https://persist-project.gr/

mrsm Home About~ People Publications Downloads Links Contacts

How:to Compute in Peis)istent Memory Systems

faturu@csd.uoc.gr

www.ics.forth.gr/~faturu/ persist @ HERL

mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/
http://www.ics.forth.gr/~faturu/

	Διαφάνεια 1: Concurrent Augmented Trees*
	Διαφάνεια 2: Main Result
	Διαφάνεια 3: Leaf-Oriented BST
	Διαφάνεια 4: AUGMENTATION
	Διαφάνεια 5: AUGMENTATION
	Διαφάνεια 6: AUGMENTATION
	Διαφάνεια 7: AUGMENTATION
	Διαφάνεια 8: EXAMPLES OF AUGMENTATION
	Διαφάνεια 9: EXAMPLES OF AUGMENTATION
	Διαφάνεια 10: APPLICATIONS OF AUGMENTATION
	Διαφάνεια 11: Main Result
	Διαφάνεια 12: Model
	Διαφάνεια 13: Tree Updates – Insert in Leaf-Oriented Tree
	Διαφάνεια 14: Insert in Leaf-Oriented Tree (Sequentially)
	Διαφάνεια 15: Insert in Leaf-Oriented Tree (Sequentially)
	Διαφάνεια 16: Updates on Augmented Trees
	Διαφάνεια 17: Challenges of Concurrency
	Διαφάνεια 18: Key Ideas
	Διαφάνεια 19: Key Ideas: Multiple Versions of Augmentation fields
	Διαφάνεια 20: Key Ideas: Version Tree
	Διαφάνεια 21: Key Ideas: Multiple Versions of Augmentation fields
	Διαφάνεια 22: Key Ideas
	Διαφάνεια 23: Updating Versions
	Διαφάνεια 24: Propagating an Insert
	Διαφάνεια 25: Propagating an Insert
	Διαφάνεια 26: Propagating an Insert
	Διαφάνεια 27: Propagating an Insert
	Διαφάνεια 28: Double Refresh
	Διαφάνεια 29: Algorithm
	Διαφάνεια 30: Proving Correctness
	Διαφάνεια 31: Proving Correctness
	Διαφάνεια 32: Improving Query Step Complexity
	Διαφάνεια 33: Comparison to Related Work
	Διαφάνεια 35: Conclusion
	Διαφάνεια 36: Thank you!

