
Recoverable Computing

PANAGIOTA FATOUROU

University of Crete, Department of Computer Science

Foundation for Research and Technology – Hellas (FORTH), Institute of
Computer Science

OPODIS 2022

Recoverable Computing

❖ Non-Volatile Main Memory (NVMM)

 byte-addressable

 large and inexpensive

 Recovery in case of failures

 resets all volatile variables to their initial

values

 the values of non-volatile variables are

retained

❖ expensive persistence instructions

 Flush (pwb), pfence, psynch

❖ Efficient recoverable implementations of

fundamental data structures

 Stacks, queues, lists, trees, etc.
2

N
O

N
-V

O
LA

TI
LE

DRAM NVMM

SECONDARY

STORAGE

REGISTERS

V
O

LA
TI

LE

System
➢Some of the shared variables

may be stored in volatile
memory, whereas others may
be stored in NVMM.

Persistent Instructions

➢Flush (pwb): write back a
cache line in NVM (async)

➢Pfence: determine order
among flushes (async)

➢Psynch: block until preceding
flushes have been realized.

Threads

Shared Variables

p1 p2 pn

11

Read/Write Variable V
- supports read(V) and write(V,val)

CAS variable V
- supports read(V) and CAS(V,old, new)

OPODIS 2022 3

Challenge I
HOW TO APPROPRIATELY MODEL AND ABSTRACT
FUNDAMENTAL ASPECTS OF NVM COMPUTING?

OPODIS 2022 5

Failure Models

❖ System-wide failures

➢ All threads fail at the same time

➢ Values of variables written back in NVMM remain intact

➢ Values of variables stored in volatile memory are lost.

❖ Independent thread failures

➢ The execution of any thread p may be abruptly interrupted.

➢ The values of local variables of p that are stored in volatile

memory are lost.

X

Thread p1

Thread p2

X

XThread p1

Thread p2 X

OPODIS 2022 6

Recovery Models
❖ System-wide recovery

➢ When the system resumes, threads are resurrected.

➢ Values of volatile variables are reset to their initial values.

➢ A recovery function may exists for the system as a whole.
[NVTraverse]PLDI’20 , [MIRROR]PLDI’21

❖ Independent thread recovery
➢ Failed threads recover asynchronously, independently of one another.

❑ Initiate new computation (e.g. a new operation, transaction, etc.)
[CX-PUC, CX-PTM, Redo, RedoOpt]EuroSys’20

❑ Recovery functions may exist for threads.
[Capsules]SPPA’19 , [PBcomb, PWFcomb]PPOPP’22 , [Tracking]PPOPP’22

 Local volatile variables of the recovered thread are reset to their initial values.

❖ Failed threads never recover. New threads are initiated instead.

[Montage]ICPP’21 , [nbMontage]DISC’21

Progress

❖ Wait-freedom: Every operation completes within a finite

number of steps, if the thread executing the operation

does not experience any crash after some point of its

execution.

❖ Lock-freedom: In every infinite execution that contains a

finite number of crashes, an infinite number of operations

complete.

❖ Blocking Algorithms

OPODIS 2022 7

Correctness – Variations of Linearizability

Strict Linearizability (conventional crash-stop failures, no recovery)

[Aguilera & Frolund, 2003]

Persistent Atomicity (independent thread failures/recoveries)

[Guerraoui & Levi, 2004]

Write(X,2) X

Read(x)

Write(X,1)

Failed operations that are included in the linearization must be linearized

by the time of the failure

Write(X,2) Write(Y,1)Write(X,1)

Failed operations that are included in the linearization must be linearized

before any subsequent invocation of an operation by the same process.

Read(X)

Thread p1

Thread p2

Thread p1

Thread p2

Read(X)->2X

OPODIS 2022 8

Correctness – Variations of Linearizability

Recoverable Linearizability (system-wide failures)

Write(X,2) Write(Y,1)Write(X,1)

Failed operations that are included in the linearization must be linearized

before any subsequent invocation of an operation on the same object by

the same process.

[Berryhill, Golab & Tripunitara, 2015]

Read(X) -> 1

Thread p1

Thread p2

Read(X)->2

X

OPODIS 2022 9

Correctness – Variations of Linearizability

Strict Linearizability

Persistent atomicity

Recoverable linearizability

OPODIS 2022 10

Correctness - System-wide failures, new

threads are initiated after a crash
Durable Linearizability

❖ after a crash the state of the object must reflect a history

containing all completed operations

❖ crashed operations may or may not be part of this history

[Izraelevitz, Mendes and Scott. 2016]

Buffered Durable Linearizability

❖ Relaxed version of durable linearizability which allows for

removing some of the completed operations from the

linearization

[Izraelevitz, Mendes and Scott. 2016]

Durable

Linearizability

Buffered Durable

Linearizability

OPODIS 2022 11

Correctness

Detectability (independent thread failures/recoveries)

❖ A thread infers if its failed operation took effect or not

before the crash

❖ if it took effect, the process obtains the response of its

operation

[Friedman, Herlihy, Marathe and Petrank, 2018]

❖ Detectability is orthogonal to the previous definitions
and can be applied on top of any of them.

OPODIS 2022 12

Topics for Thought
 Different failure and recovery models

 Most realistic? Fair comparison of results proposed for different models?

 Different persistence conditions have been presented under
different models

 Some can easily be transformed from one model to another, others not.

 Enable a fair comparison of them conditions.

 There are many correctness conditions for the conventional crash-
stop model, which have not been studied in a recoverable setting.

 Causality-based conditions? Correctness conditions for specific settings (e.g.,
transactional systems, etc.)

 Study trade-offs between correctness and performance, progress
and performance, and possibly also between correctness and
progress.

OPODIS 2022 13

Challenge II
HOW TO COMPUTE IN A RECOVERABLE WAY AT
NO SIGNIFICANT COST?

Designing Recoverable Objects
Challenges

❖ operation effect is partial

❖ operation effect was obliterated

❖ multiple identical operations

E

Push (E)

E

Push (E)

E

A

B

C

D

It is not trivial to design a recoverable
data structure!

E

Pop ()

E

Push (E)

E

A

B

C

D

OPODIS 2022 15
Panagiota Fatourou

Main Techniques

❖Some form of logging

➢Undo log
[Atlas]SIGPLAN Not.’14 , [REWIND]VLDB’15 , [Crafty]PLDI’20 , [Clobber-NVM]ASPLOS’21

➢Redo log
[NV-Heaps] SIGARCH Comput. Archit. News’11 , [Pangolin] ATC’19 , [NVthreads]EuroSys’17 ,

[DudeTM]ASPLOS’17 , [Romulus]SPAA’18 , [Pisces]USENIX ATC’19 , [OneFile]DSN’19 , [DPTree]VLDB’19 ,

[PETRA] ACM TACO’21 , [SPHT]FAST’21

OPODIS 2022 16
Panagiota Fatourou

Main Techniques

❖Dual copy techniques

One consistent copy and one working copy on which

modifications are performed

➢ persist working copy, then apply changes to consistent copy
[Persimmon]OSDI’20 , [Pisces]USENIX ATC’19 , [MIRROR]PLDI’21

❑ If a crash occurs while working copy is being changed, at

recovery, copy data from consistent copy to working copy.

❑ If a crash occurs after working copy has been persisted, at

recovery, replay the write back of the working copy to the

consistent copy.

➢ Alternate roles of working copy and consistent copy[PMThreads]PLDI’20

OPODIS 2022 17
Panagiota Fatourou

Main Techniques

❖Copy on Write
[NVthreads]EuroSys’17 , [Kamino-Tx]EuroSys’17 , [DudeTM]ASPLOS’17 , [WORT]FAST’17 , [Clfb-

tree] ACM Trans. Storage’18 , [Trinity, Quadra]PPoPP’21 , [ArchTM]FAST’21 , [SPHT]FAST’21

➢ Copy simulated state locally

➢ Update local copy

➢ Persist local copy

➢ Update shared pointer to point to local copy

➢ Persist the pointer

OPODIS 2022 18
Panagiota Fatourou

Main Techniques

❖ Use of Info records (or descriptors) to record and persist state (info

records are often found in lock-free algorithms for implementing helping)

[Tracking]PPOPP’22, [R. Guerraoui et al.]DISC’20

❖ Link-and-Persist [David at al.]USENIX ATC’18 , [Tracking]PPOPP’22 , [FliT]PPOPP’22

➢ Αvoid executing pwb instructions when the variable being flushed is clean.

➢ Use a single bit in each memory word as a flag indicating whether or not it has

been flushed since the last time it was updated.

➢ A reader executes a pwb and psynch on any location it reads that had the flag

up, and skips persisting every time the flag is down.

❖ Combination of different techniques for different components to

exploit benefits and mask weaknesses.

OPODIS 2022 19
Panagiota Fatourou

Universal Constructions and General Transformations
for Designing Persistent DS

Blocking

Durable Linearizable

Buffered Durable Linearizable

nbMontage
Montage

Detectable

Wait-free

PWFComb Capsules

Tracking

Lock-free

CX-PUC

CX-PTM NVTraverse

ONLL

Mirror

PBComb

Prep-UC

Romulus

OPODIS 2022 20
Panagiota Fatourou

• PWFComb, PBComb,

Fatourou et al., PPoPP’22

• Tracking, Attiya et al.,

PPoPP’22

• Capsules, Ben-David et al.,

SPAA’19

• CX-PTM, CX-PUC, RedoOpt,

Correia et al., EuroSys’20

• OneFile, Ramalhete et al.,

DSN’19

• NVTraverse, Friedman et al.,

PLDI’20

• ONLL, Cohen et al.,

SPAA’18

• Mirror, Friedman et al.,

PLDI’21

• Romulus, Correia et al.,

SPAA’18

• Prep-UC, Coccimiglio et al.,

SPAA’22

• Montage, Wen et al.,

ICPP’21

nbMontage, Cai et al.,

DISC’21

RedoOpt

OneFile

Persistence Principles Crucial for Performance
Fatourou, Kallimanis & Kosmas, PPoPP’22

1. The number of the persistence instructions should be kept as low as
possible
 Store in NVM only those variables (and persist only those from their values) that are

absolutely necessary for recoverability

[Vast majority of work aims at achieving this]

2. The persistence instructions should be of low cost (e.g., by persisting
less highly-contented shared variables)
 Avoid pwbs on variables on which CAS is performed before or after [Tracking]PPOPP’22
 Reduce accesses to recently flushed cache lines [Sela & Petrank]SPAA’21 ,

[MIRROR]PLDI’21

3. Data to be persisted should be placed in consecutive memory
addresses, so that they are persisted all together

[PBcomb, PWFcomb]PPOPP’22 , [ArchTM]FAST’21

OPODIS 2022 21
Panagiota Fatourou

A thread attempts to become a
combiner and serve in addition
to its own request, active requests
by other threads
After announcing their requests ,
other threads may:

either perform local spinning until
the combiner performs their requests
or perform the same actions as the
combiner (although not always
“successfully”)

Persistent Software

Combining

A. Mechanism to choose which thread will
act as the combiner

B. Data structure to store the active requests

C. Mechanism to apply the updates

D. Mechanism for collecting the requests’
responses

E. Mechanism to discover which requests
have been applied or not.

Design Decisions of Combining

Protocols Crucial for Performance

[Fatourou, Kallimanis & Kosmas, PPoPP 2022 - Best Paper Award]

OPODIS 2022 22
Panagiota Fatourou

Why is combining promising

in conventional DRAM systems?

conventional lock-

based implementation

T1

T2

time

lock push(A) unlock

lock push(B) unlock

announce

announce lock push(A) push(B) unlock

combiner

T1
T2

A B

T1

T2

T1

T2

time

Software Combining

technique

Announce Array

push(A)

push(B)

OPODIS 2022 23
Panagiota Fatourou

Why is combining promising

in an NVM setting?

T1

T2

time

lock push(A) unlock

lock push(B) unlock

persist A

persist B

conventional

recoverable lock-

based implementation

persist = usually two

instructions (pwb &

psynch)

T1

T2

time

announce

announce lock push(A) push(B) unlockpersist A & B

Software Combining

technique

OPODIS 2022 24
Panagiota Fatourou

Key Idea
Why is this a promising approach?

Benefits:

✓ reduced number of synch instructions

✓ store multiple nodes into a single cache line →

reduced number of flushes

Software Combining →

Efficient Recoverable

Data Structures

T1

T2

time

announce

announce lock push(A) push(B) unlockpersist A & B

OPODIS 2022 25
Panagiota Fatourou

Persistent Software Combining

Efficient recoverable blocking and wait-free

❖ synchronization protocols

 outperform previously proposed recoverable UCs

[RedoOpt]EuroSys’20 and STMs [CX-PTM]EuroSys’20 , [OneFile]DSN’19

❖ Stacks, queues and heaps

 outperform previous implementations (including specialized)

 queues [OptLinkedQ, OptUnLinkedQ]SPAA’21 , [CX-PUC, CX-PTM, RedoOpt]EuroSys’20 ,
[OneFile]DSN’19 , [Capsules]SPPA’19 , [Friedman et al]PPoPP’18 , [Romulus]SPAA’18

 stacks [DFC]arXiv’20 , [OneFile]DSN’19 , [RomulusLog]SPAA’18

OPODIS 2022 27
Panagiota Fatourou

[Fatourou, Kallimanis & Kosmas, PPoPP 2022]

Performance Analysis
Fundamental Data Structures

Recoverable Queue Recoverable Stack

PBstack:>4x

PWFstack:>2x

OPODIS 2022 28
Panagiota Fatourou

Combining Technique: Can it always be

applied efficiently?

 Using a single thread to apply all active requests
may restrict parallelism, if the size of the object is
small or the number of synchronization points is
constant.

 Multiple searches (or even updates) could
proceed in parallel in a tree-like data structure.

A

B C

D E F

G H
I J

K

OPODIS 2022 29
Panagiota Fatourou

Tracking – Detectable Lock-Free DS

Derive efficient recoverable implementations of concurrent, lock-free

data structures
Technique:

❖ per-operation Info Structure

 tracks operation’s progress

 it is persisted to NVM

❖ a pragmatic scheme to add

persistence instructions

❖ mechanical transformation

❖ linked list, binary search tree, exchanger

Benefits:

 avoids full-fledged logging

 reduces the persistence cost for ensuring
detectable recovery → yields efficient

implementations

OPODIS 2022 30
Panagiota Fatourou

[Attiya, Ben-Baruch, Fatourou, Hendler & Kosmas, PPoPP 2022]

Info-Structure Based-Tracking
Example: Linked List

❖ each node is augmented with a special info field, containing a pointer to an IS

Op: Delete(15)

1. after Op initialize its IS, it attempts to install it in any node that Op may affect

−∞ 3 27 +∞8 15

OPODIS 2022 31
Panagiota Fatourou

Info-Structure Based-Tracking
Example: Linked List

❖ each node is augmented with a special info field, containing a pointer to an IS

Op: Delete(15)

1. after Op initialize its IS, it attempts to install it in any node Op may affect

2. once successful, Op can be completed using this information (also by other

threads)

−∞ 3 27 +∞8 15

OPODIS 2022 32
Panagiota Fatourou

Info-Structure Based-Tracking
Example: Linked List

❖ each node is augmented with a special info field, containing a pointer to an IS

Op: Delete(15)

1. after Op initialize its IS, it attempts to install it in any node Op may affect

2. once successful, Op can be completed using this information (also by other

processes)

3. after making its changes, Op uninstalls its IS

−∞ 3 27 +∞158

OPODIS 2022 33
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes that may be affected by Op→ AffectSet

−∞ 3 27 +∞8 15

OPODIS 2022 36
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help operations pointed to by info of nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

−∞ 3 27 +∞8 15

OPODIS 2022 37
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

−∞ 3 27 +∞8 15

𝑨𝒇𝒇𝒆𝒄𝒕𝑺𝒆𝒕 = 𝒏𝒐𝒅𝒆 𝟖, 𝒏𝒐𝒅𝒆 𝟏𝟓
𝑾𝒓𝒊𝒕𝒆𝑺𝒆𝒕 = 𝒖𝒑𝒅𝒂𝒕𝒆 𝒏𝒐𝒅𝒆 𝟖 𝒕𝒐 𝒑𝒐𝒊𝒏𝒕 𝒕𝒐 𝒏𝒐𝒅𝒆 𝟐𝟕
𝒓𝒆𝒔𝒖𝒍𝒕 = ⊥

OPODIS 2022 38
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

4. Tagging Phase: install pointer to opInfo in all nodes of AffectSet

−∞ 3 27 +∞8 15

𝑨𝒇𝒇𝒆𝒄𝒕𝑺𝒆𝒕 = 𝒏𝒐𝒅𝒆 𝟖, 𝒏𝒐𝒅𝒆 𝟏𝟓
𝑾𝒓𝒊𝒕𝒆𝑺𝒆𝒕 = 𝒖𝒑𝒅𝒂𝒕𝒆 𝒏𝒐𝒅𝒆 𝟖 𝒕𝒐 𝒑𝒐𝒊𝒏𝒕 𝒕𝒐 𝒏𝒐𝒅𝒆 𝟐𝟕
𝒓𝒆𝒔𝒖𝒍𝒕 = ⊥

OPODIS 2022 39
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

4. Tagging Phase: install pointer to opInfo in all nodes of AffectSet

i. Backtrack Phase: if tagging fails, untag all nodes; restart

−∞ 3 27 +∞8 15

𝑨𝒇𝒇𝒆𝒄𝒕𝑺𝒆𝒕 = 𝒏𝒐𝒅𝒆 𝟖, 𝒏𝒐𝒅𝒆 𝟏𝟓
𝑾𝒓𝒊𝒕𝒆𝑺𝒆𝒕 = 𝒖𝒑𝒅𝒂𝒕𝒆 𝒏𝒐𝒅𝒆 𝟖 𝒕𝒐 𝒑𝒐𝒊𝒏𝒕 𝒕𝒐 𝒏𝒐𝒅𝒆 𝟐𝟕
𝒓𝒆𝒔𝒖𝒍𝒕 = ⊥

8 15

OPODIS 2022 40
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

4. Tagging Phase: install pointer to opInfo in all nodes of AffectSet

i. Backtrack Phase: if tagging fails, untag all nodes; restart

5. Update Phase: make all the changes of Op

−∞ 3 27 +∞8 15

𝑨𝒇𝒇𝒆𝒄𝒕𝑺𝒆𝒕 = 𝒏𝒐𝒅𝒆 𝟖, 𝒏𝒐𝒅𝒆 𝟏𝟓
𝑾𝒓𝒊𝒕𝒆𝑺𝒆𝒕 = 𝒖𝒑𝒅𝒂𝒕𝒆 𝒏𝒐𝒅𝒆 𝟖 𝒕𝒐 𝒑𝒐𝒊𝒏𝒕 𝒕𝒐 𝒏𝒐𝒅𝒆 𝟐𝟕
𝒓𝒆𝒔𝒖𝒍𝒕 = ⊥

OPODIS 2022 41
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation

Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op

4. Tagging Phase: install pointer to opInfo in all nodes of AffectSet

i. Backtrack Phase: if tagging fails, untag all nodes; restart

5. Update Phase: apply all the changes of Op

6. opInfo.result ← Op‘s response

7. Cleanup Phase: untag nodes still in the DS

−∞ 3 27 +∞158

𝑨𝒇𝒇𝒆𝒄𝒕𝑺𝒆𝒕 = 𝒏𝒐𝒅𝒆 𝟖, 𝒏𝒐𝒅𝒆 𝟏𝟓
𝑾𝒓𝒊𝒕𝒆𝑺𝒆𝒕 = 𝒖𝒑𝒅𝒂𝒕𝒆 𝒏𝒐𝒅𝒆 𝟖 𝒕𝒐 𝒑𝒐𝒊𝒏𝒕 𝒕𝒐 𝒏𝒐𝒅𝒆 𝟐𝟕
𝒓𝒆𝒔𝒖𝒍𝒕 = 𝒕𝒓𝒖𝒆

OPODIS 2022 43
Panagiota Fatourou

Info-Structure Based-Tracking
Mechanical Transformation – Adding Persistence Instructions
Procedure Op (args)

1. Gather Phase: collect nodes relevant to Op→ AffectSet

2. Helping Phase: help nodes in AffectSet if needed; restart

3. opInfo ← a new Info Structure containing the data of Op
pwb(opInfo); psync();

4. Tagging Phase: install pointer to opInfo in all nodes of AffectSet
pwb after any install

i. Backtrack Phase: if tagging fails, untag all nodes

pwb after any untag

psync at the end

restart

psync();
5. Update Phase: make all the changes of Op

pwb after any update

6. opInfo.result ← Op‘s response

pwb(opInfo.result); psync();

7. Cleanup Phase: untag nodes still in the DS

OPODIS 2022 45
Panagiota Fatourou

OPEN QUESTIONS
❖ Most proposed algorithms have been designed to ensure

Performance Principle 1. Is it possible to design more efficient

algorithms by taking into consideration all performance principles?

❖ Recoverable versions of concurrent data structures

➢ Skip lists [Chowdhury & Golab, SPAA’21, Xiao et al., IEEE Access’21]

➢ Priority Queues [PBHeap, Fatourou et al, PPoPP’22]

➢ Specialized tree implementations

➢ Specialized Queue implementations

➢ Graphs

➢ NUMA-aware data structures [Prep-UC, Coccimiglio et al., SPAA’22]

❖ Recoverable Garbage Collection

OPODIS 2022 46
Panagiota Fatourou

Challenge III
HOW TO ANALYZE THE COST OF RECOVERABLE
ALGORITHMS?

Tracking Evaluation
Linked-List Based Set

❖ Tracking Linked List (no hand-

tuning has been applied)

❖ Capsules-Opt: strongly hand-

tuned transformation of Harris’
linked list using capsules

[Attiya et al., PPoPP 2022]

❖ Capsules: general scheme

described by Capsules authors

(not hand-tunned)
[Ben-David, Blel loch, Wei. 2018]

 Romulus
[Correia, Felber, Ramahlete, SPAA 2018]

 RedoOpt

[Correia, Felber, Ramahlete, Eurosys 2020]

Tracking exhibits better performance as the number

of threads increases.

OPODIS 2022 48
Panagiota Fatourou

Evaluation
Linked-List Based Set

The synchronization cost of Tracking is also higher than that of Capsules-Opt.

OPODIS 2022 49
Panagiota Fatourou

Evaluation
Linked-List Based Set

 Tracking performs more psyncs→ negligible cost

 Tracking performs more pwbs

❖ Methodology for measuring the overhead of each pwb

1. remove all code lines with persistence instructions

2. for each removed code line L that contains a pwb

3. add L to code

4. run experiment (to measure L’s impact)

5. remove L from code

❖ Categorization

 Low, Medium, and High impact code lines

What causes the
good performance

of Tracking?

what about the impact of
each single persistence

instruction?

OPODIS 2022 50
Panagiota Fatourou

Evaluation
Linked-List Based Set

OPODIS 2022 51
Panagiota Fatourou

Evaluation
❖ The impact of psyncs in machines with existing NVM

technology is negligible

❖ A low-cost flush is applied either on a private variable

stored in NVM or in newly-allocated data that has not

yet become shared.

❖ A flush that incurs high performance penalty is executed

on a shared variable (cache line) which is accessed by

many threads, as such flushes will result in a high number

of cache misses.

❖ The paper provides reasons that different flushes incur

different performance costs.

OPODIS 2022 53
Panagiota Fatourou

Challenge IV
WHEN IS RECOVERABLE CONSENSUS HARDER
THAN CONSENSUS?

Consensus

Validity: Each output is the input of

some process

Agreement: No 2 outputs differ

Termination: If a process takes

enough steps without crashing,it

outputs a value

Consensus Problem

OPODIS 2022 55
Panagiota Fatourou

Validity: Each output is the
input of some process

Agreement: No 2 outputs
differ (including 2 outputs of 1
process)

Progress: If a process takes
enough steps between
crashes, it outputs a value

Recoverable Consensus Problem

(RC) [Golab, SPAA 2020]

Each process has an input value and must output a value.

Consensus Hierarchy

Maximum number of processes that

can solve wait-free consensus

using objects of type T and registers

tolerating permanent crashes

Consensus Number, cons(T)

OPODIS 2022 56
Panagiota Fatourou

Maximum number of processes that

can solve recoverable consensus

using objects of type T and registers

tolerating independent crash-

recovery failures

System-wide failures 

simultaneous RC number

Recoverable Consensus (RC)

Number, rcons(T)

Herlihy’s Universality Result

A type T can be used (with

registers) to obtain a wait-free

implementation of all object

types in a system of n processes

if and only if cons(T) is at least n.

Conventional crash-stop failure

model

OPODIS 2022 57
Panagiota Fatourou

Universality result carries over to

the model with crashes and

recoveries, using RC in place of

consensus.

[Berryhil, Golab, Tripunitara,

OPODIS’15]

Crash-Recovery Failure Model
(both system-wide and independent)

System-Wide Crash-Recovery Model

❖ Recoverable consensus is solvable among n processes using

objects of type T and registers if and only if cons(T) is at least n.

[Golab, SPAA’20, Delporte-Gallet et al., PODC’22]

Independent Crash-Recovery Model
rcons(T) ≤ cons(T)

 Any RC algorithm also solves consensus.

 So RC is at least as hard as consensus.

58

Independent Crash Recovery Model
Is RC (much) harder than consensus?

Can rcons(T) be (much) smaller than cons(T)?
Delporte-Gallet, Fatourou, Fauconier & Ruppert, PODC 2022

 Focused on readable objects

 Defined n-recording property of shared object types.

Theorem 1 (Sufficient Condition)

If a deterministic readable type T is n-recording, then objects of type T,
together with registers, can be used to solve recoverable consensus for n
processes.

Theorem 2 (Necessary Condition)

If a deterministic readable type T can be used, together with registers, to
solve recoverable consensus for n processes, then T is (n-1)-recording.

59

Open Problems

❖ Is rcons(T) << cons(T) for some non-readable type

T?

❖Close gap between necessary and sufficient

condition.

➢ First step: Is 2-recording necessary for solving 2-process

RC?

60

NVM: Re-shaping the traditional memory

hierarchy

 Models, performance metrics, and analysis patterns may

have to be re-developed

 Assumptions that were considered fundamental in the

past may now vanish

 Standard algorithmic design choices may have to be re-

thought

 Well-known trade-offs may now diminish.

OPODIS 2022 61
Panagiota Fatourou

Thank You!

QUESTIONS?

http://www.ics.forth.gr/~faturu/

faturu@csd.uoc.gr

http://www.ics.forth.gr/~faturu/
mailto:faturu@csd.uoc.gr

