
Multi-Version Concurrent Data Structures

PANAGIOTA FATOUROU
University of Crete, Department of Computer Science

Foundation for Research and Technology - Hellas

School on the Practice and Theory of Distributed Computing, November 2023

Multiversion Objects

◦ A multiversion object maintains its previous versions,
so threads can have access to the history of the object (i.e., to its
previous values).

5 10

Current version

Write(10)

5

Current version

Write(8)
8

10

Current version

5

2SPTDC 2023 PANAGIOTA FATOUROU

Multiversioning
• Multiversioning is widely used:

Database systems

• Software Transactional Memory
[Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

• Concurrent data structures
[Fatourou et al. SPAA’19] [Wei et al. PPoPP’21]
[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

3SPTDC 2023 PANAGIOTA FATOUROU

Many applications require querying large portions or
multiple parts of the data structure.

Big-data applications use shared in-memory tree-based
data indices
• Fast data retrieval
• Useful data analytics

Why Multiversioning?

4SPTDC 2023 PANAGIOTA FATOUROU

Concurrent Data
Structure built out of
CAS objects

Take a snapshot
of the data
structure

Answer multi-
point Queries
using snapshot

The vCAS technique

• Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, and Yihan
Sun: Constant-Time Snapshots with Applications to Concurrent Data Structures, PPoPP 2021.

Snapshot: Saves a read-only version of the state of the data structure at a single
point in time. [An atomic view of the state of the data structure.]

Why multivesion Concurrent Data
Structures?

5SPTDC 2023 PANAGIOTA FATOUROU

Background Knowledge

6SPTDC 2023 PANAGIOTA FATOUROU

Model Thread 1 Thread 2 Thread n…

shared variables

ATOMIC boolean Compare&Swap(
Variable V, Value vold, Value vnew) {

if (V == vold) { V = vnew; return TRUE; }
return FALSE;

}

▪ The system is asynchronous.

▪ Threads communicate by
accessing shared variables.

▪ In addition to Read and
Write, a thread may execute
an atomic CAS instruction on
a shared variable.

▪ Threads may fail by crashing.

7SPTDC 2023 PANAGIOTA FATOUROU

Correctness [Herlihy & Wing]
Linearizability

In every execution α, each operation should have the
same response as if it has executed serially (or
atomically) at some point in its execution interval.
This point is called linearization point of the
operation.

8SPTDC 2023 PANAGIOTA FATOUROU

Linearizability: Queue supporting
ReadAll()

ReadAll()

* * time

?* ?*?*

Deq() Enq(3)res= 1 ok

ok() -> {1,2}

Enq(1) Enq(2) ok

* *

{1}Queue: {1, 2} {2} {2, 3}

*

9SPTDC 2023 PANAGIOTA FATOUROU

ReadAll()

* * time

?* ?*?*X

Example of non-linearizable execution

Deq() Enq(3)res= 1 ok

{1,2,3}

Enq(1) Enq(2) ok ok

* *

Linearizability: Queue supporting
ReadAll()

X X

{1}Queue: {1, 2} {2} {2, 3}

10SPTDC 2023 PANAGIOTA FATOUROU

ReadAll()

* * time

?* ?*?*X

Example of non-linearizable execution

Deq() Enq(3)res= 1 ok

{1,2,3}

Enq(1) Enq(2) ok ok

* *

Linearizability: Queue supporting
ReadAll()

X X

1

Head

2

Tail

res = {1,2}

{1}Queue: {1, 2} {2} {2, 3}

Set ReadAll() { // sequential alg
Node *q = Head;
Set res;
while (q != NULL) {

res = res  {q->data};
q = q-> next; }

return res;
}

11SPTDC 2023 PANAGIOTA FATOUROU

ReadAll()

* * time

X

Example of non-linearizable execution

Deq() Enq(4)res= 1 ok

{1,2,3}

Enq(1) Enq(2) ok ok

* *

Linearizability: Queue supporting
ReadAll()

Head

2 3

Tail

Set ReadAll() {
Node *q = Head;
while (q != NULL) {

res = res  {q->data};
q = q-> next; }

return res;
}
X res = {1,2,3}

X X

1X
12SPTDC 2023 PANAGIOTA FATOUROU

Progress

Non-blocking Algorithms

Wait-Freedom

Every thread finishes the execution of its operation within a finite
number of steps.

Lock-Freedom

Some thread finishes the execution of its operation within a finite
number of steps.

13SPTDC 2023 PANAGIOTA FATOUROU

An Example of a Concurrent
Queue Implementation

14SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Dummy

Tail

Head

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

15SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Tail

Head

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

Thread 1
Enqueue(1)

Read

Read

Michael & Scott Queue as an Example

16SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Tail

Head

1

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

Thread 1
Enqueue(1)

CAS 

Michael & Scott Queue as an Example

17SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Dummy

Tail

Head

1

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

Thread 1
Enqueue(1)

18SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Tail

Head

1

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

Thread 1
Enqueue(1)

CAS 

Michael & Scott Queue as an Example

19SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Tail

Head

1

struct node {

T value ; // unmutable

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; // initially, both point

to a dummy node

Michael & Scott Queue as an Example

20SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Tail

Head

1

2

Thread 2
Enqueue(2)

Thread 1
Enqueue(1)

CAS 

CAS X

Michael & Scott Queue as an Example

21SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Thread 1

CAS 

Michael & Scott Queue as an Example

22SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Michael & Scott Queue as an Example

23SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail CAS 

Michael & Scott Queue as an Example

24SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 1

Tail
CAS 

Michael & Scott Queue as an Example

25SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Tail

Michael & Scott Queue as an Example

26SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Thread 1
is slow

Michael & Scott Queue as an Example

Read
Read

27SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Thread 1
is slow

CAS 

Michael & Scott Queue as an Example

28SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Thread 1
is slow

CAS 

Michael & Scott Queue as an Example

29SPTDC 2023 PANAGIOTA FATOUROU

Dummy

Head

1 2

Thread 2

Tail

Thread 1
is slow

CAS 

Michael & Scott Queue as an Example

30SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Dummy

Head

1 2

Tail

31SPTDC 2023 PANAGIOTA FATOUROU

Head

Thread 1
Deq()

Read

Michael & Scott Queue as an Example

Dummy 1 2

Tail

stores 1 as its return value

32SPTDC 2023 PANAGIOTA FATOUROU

ReadRead

Head

Thread 1
Deq()

Michael & Scott Queue as an Example

Dummy 1 2

Tail

CAS 

33SPTDC 2023 PANAGIOTA FATOUROU

Head

Michael & Scott Queue as an Example

Dummy
Dummy

1
2

Tail

34SPTDC 2023 PANAGIOTA FATOUROU

vCAS Technique

Lock-free Queue [Michael & Scott’96]

Enqueue, Dequeue
Lock-free Snapshottable Queue

Enqueue

Dequeue

Snapshot

Range Query

i-th element

All elements

Simple, General, Efficient!

Preserves parallelism
and time bounds

O(1) time, a single CAS

Wait-free,
Linearizable

Works with many lock-free data structures,

including:

• BST [Ellen,Fatourou, Ruppert, Breugel’10]

• Linked List [Harris’01]

• Chromatic Tree [BrownEllenRuppert’14]

• …

Lock-free
Concurrent
Data
Structure

Take a snapshot
of the Data
Structure

Answer multi-
point Queries
using snapshot

35SPTDC 2023 PANAGIOTA FATOUROU

Overview of the VCAS Approach
CAS Object Versioned CAS (vCAS) Object

Camera Object

Supports:
• vRead
• vCAS
• readVersion

Supports:
• Read
• CAS

Supports:
TakeSnapshot

Time Complexity:
• vRead(X)
• vCAS(X, old, new)
• takeSnapshot()
• readVersion(X, S)

O(1) time, small
constant

wait-free

36SPTDC 2023 PANAGIOTA FATOUROU

Makes it possible for a thread to later
read only the memory locations it needs
from shared memory, knowning that all
such reads will be atomic.

Supporting Multi-Point Queries
ts

Reads 0

012

Reads 1 Reads 1

Query thread

2 • Each query calls TakeSnapshot to get
a timestamp.

• More than one queries may have
the same timestamp.

• Each query attempts to atomically
increment ts using CAS.

• Each version of a vCAS object has a
timestamp, which has been read
from ts.

37SPTDC 2023 PANAGIOTA FATOUROU

Versioned CAS Implementation
VCAS Object

next

• VCAS objects are represented internally using version lists. The
fields of a Vnode (i.e., a node of a version list) are:

• val
• ts
• vnext

38SPTDC 2023 PANAGIOTA FATOUROU

nextv 8 valnextv 4 valnextv 0 val

Current value of next: Pointer to next node of queue

VNode VNode VNode

List ordered by timestamps,
most recent first.

Versioned CAS Implementation
VCAS Object

next

39SPTDC 2023 PANAGIOTA FATOUROU

nextv 8 valnextv 4 valnextv 0 val

previous values of next field of node

Versioned CAS Implementation

ts

vCAS(X, old, new)
• Link in a new node with

timestamp TBD
• Update its timestamp

vRead(X)
• Help update timestamp of

most recent version
• Return its value

takeSnapshot()
• Attempt to increment ts

using CAS
• Return its previous value

readVersion(X, t)
• Help update timestamp
• Find newest version with timestamp ≤ t

VCAS Object

40SPTDC 2023 PANAGIOTA FATOUROU

8

next

nextv 8 valnextv 4 valnextv 0 val

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

nextv 0 val

struct node {

T value ;

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *;

struct node {

T value ;

vCAS Object next : struct node *;

}

vCAS objects Head, Tail: struct node *;

Head

nextv 0 val

0 ts

41SPTDC 2023 PANAGIOTA FATOUROU

vRead(X)
• Help update timestamp of

most recent version of X
• Return current value of X

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

Thread 1
Enqueue(1)

nextv 0 val

vRead

vRead

struct node {

T value ;

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *;

struct node {

T value ;

vCAS Object next : struct node *;

}

vCAS objects Head, Tail: struct node *;

Head

nextv 0 val

0 ts

42SPTDC 2023 PANAGIOTA FATOUROU

vRead(X)
• Help update timestamp of

most recent version of X
• Return current value of X

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

1

Thread 1
Enqueue(1)

nextv 0 val nextv 0 val

struct node {

T value ;

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *;

struct node {

T value ;

vCAS Object next : struct node *;

}

vCAS objects Head, Tail: struct node *;

Head

nextv 0 val

0 ts

43SPTDC 2023 PANAGIOTA FATOUROU

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

1

Thread 1
Enqueue(1)

vCAS 

nextv 0 val nextv 0 valnextv -1 val

struct node {

T value ;

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *;

struct node {

T value ;

vCAS Object next : struct node *;

}

vCAS objects Head, Tail: struct node *;

Head

nextv 0 val

0 ts

44SPTDC 2023 PANAGIOTA FATOUROU

vCAS(X, old, new)
• Malloc() a new vNode with

timestamp TBD (-1)
• Link it in the version list of the

vCAS object
• Update its timestamp

Dummy

Tail struct node {

T value ;

CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *;

struct node {

T value ;

vCAS Object next : struct node *;

}

vCAS objects Head, Tail: struct node *;

nextv 0 val

1

Thread 1
Enqueue(1)

nextv 0 val nextv 0 valnextv 0 val

Head

nextv 0 val

0 ts

45SPTDC 2023 PANAGIOTA FATOUROU

vCAS(X, old, new)
• Malloc() and link in a new vNode

with timestamp TBD (-1)
• Make it the first node in the vlist

of vCAS object
• Update its timestamp

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

1

Thread 1

nextv 0 val nextv 0 valnextv 0 val

vCAS 

nextv 0 val

Head

nextv 0 val

ts0

46SPTDC 2023 PANAGIOTA FATOUROU

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv val

1

Thread 1

nextv 0 val nextv 0 valnextv 0 val

Head

nextv ts val

ts0

47SPTDC 2023 PANAGIOTA FATOUROU

nextv 0 val nextv 0 val

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv 0 val

1

nextv 0 val nextv 0 valnextv 0 val

nextv 0 val

2

Thread 2
Enqueue(2)

nextv ts val

3

Thread 3
Enqueue(3)

nextv ts val

Thread 4

Head

nextv ts val

deq()

ts0

48SPTDC 2023 PANAGIOTA FATOUROU

Version list of 1->nextVersion list of Dummy-> next

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Dummy

Tail

nextv ts val

0 0

1

nextv ts val

0 0

2

0 0

3

0 0

nextv ts val nextv ts val

Head

nextv ts val

0 0

ts0

49SPTDC 2023 PANAGIOTA FATOUROU

nextv ts

0 0 0 0

val

Version list of Tail
Version list
of Head

Version list of 2->next Version list of 3->next

Multi-Point Queries:
Michael & Scott Queue as an Example

3

Thread 3
Enqueue(3)

nextv ts val

Thread 4

ts

ReadAll()

Dummy

Tail

nextv ts val

0 0

1

nextv ts val

0 0

2

0

nextv ts val

Head

nextv ts val

0

deq()

0

50SPTDC 2023 PANAGIOTA FATOUROU

nextv ts val

0 0 0

Takesnapshot → 0

1

Multi-Point Queries:
Michael & Scott Queue as an Example

Dummy

nextv ts val

0 0

Dummy

nextv ts val

0 0

2

0 1

3

1
nextv ts val nextv ts val

Head

nextv ts val

0 1

ts1

51SPTDC 2023 PANAGIOTA FATOUROU

Tail

0 0 0 1

Multi-Point Queries:
Michael & Scott Queue as an Example

ReadAll()
• Executes Sequential Code, but…

Dummy

Tail

nextv ts val

0 0

1

nextv ts val

0 0

2

0 1

3

1
nextv ts val nextv ts val

Head

nextv ts val

0 1

ts1

52SPTDC 2023 PANAGIOTA FATOUROU

0 0 0 1

Set ReadAll() {
Node *q = Head;
while (q != NULL) {

res = res  {q->data};
q = q-> next; }

return res;
}

ReadAll()

* * time

X

Example of non-linearizable execution

Deq() Enq(4)res= 1 ok

{1,2,3}

Enq(1) Enq(2) ok ok

* *

Linearizability: Queue supporting
ReadAll()

Head

2 3

Tail

Set ReadAll() {
Node *q = Head;
while (q != NULL) {

res = res  {q->data};
q = q-> next; }

return res;
}
X res = {1,2,3}

X X

1X
53SPTDC 2023 PANAGIOTA FATOUROU

Multi-Point Queries:
Michael & Scott Queue as an Example

ReadAll()

• Executes Sequential Code for ReadAll() but…
• Uses ReadVersion(0) to read the values of vCAS objects as it

goes
It returns {1,2}

Dummy

Tail

nextv 0 val

nextv ts val

nextv 0 val nextv 0 val nextv 1 val

0 0

1

nextv ts val

0 0

2

0 1

3

1
nextv ts val nextv ts val

Head

nextv ts val

0 1

ts1

54SPTDC 2023 PANAGIOTA FATOUROU

readVersion(X, t)
• Help update timestamp
• Find newest version with time ≤ t

void enq(T value) {
NODE *next , *last ;

1. NODE *p = newcell(NODE) ;

// p->value = value ; p->next = NULL;

4. while (TRUE) {
5. last = Tail ;
6. next = last->next ;
7. if (last != Tail) continue;
8. if (next != NULL) {
9. CAS(, last, next);
10. continue;
11. }
12. if (CAS(, NULL , p)) break ;
13. }
14. CAS(, last, p);
}

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Tail

last->next

Tail

void enq(T value) {
NODE *next , *last ;

1. NODE *p = new(NODE, value, NULL) ;

4. while (TRUE) {
5. last = vRead(Tail) ;
6. next = vRead(last->next);
7. if (last != vRead(Tail)) continue;
8. if (next != NULL) {
9. vCAS(, last, next);
10. continue;
11. }
12. if (vCAS(, NULL , p)) break ;
13. }
14. vCAS(, last, p);
}

Tail

last->next

Tail

55SPTDC 2023 PANAGIOTA FATOUROU

Versioned CAS on BSTs

A

B C

D E

A

5 54

B’ B

3

CC’

5

D

5

E

root

root

21

A’

Snapshottable BST Expanding out VCAS objects

Timestamps

56SPTDC 2023 PANAGIOTA FATOUROU

Examples of queries
• Range queries
• Tree height
• Smallest key that

matches a condition
• K-successors
• Multi-lookup

Comparison with Existing Techniques

Generality

Ef
fi

ci
en

cy

LFCA [Winbland et al., SPAA’18]

KiWi [Basil et al., PPoPP’17]

PNB-BST [Fatourou et al., SPPA’19]

SnapTree [Bronson et al., PPoPP’10]

Epoch RQs [Arbel, Raviv et
al., PPoPP’18]

SnapCollector [Petrank et
al., PPoPP’13] STM

[Fernandez et
al., PPoPP’11]

The VCAS
Approach,
Wei et al.

58SPTDC 2023 PANAGIOTA FATOUROU

Practical Optimizations
❑ Avoiding Indirection

❑ Using exponential backoff to reduce contention
when accessing the global timestamp

❑ Removing redundant versions from the version list

❑ Garbage collecting old versions

59SPTDC 2023 PANAGIOTA FATOUROU

Avoiding Indirection

A

B C

D E

A

5 54

B’ B

3

CC’

5

D

5

E

root

root

21

A’

Snapshottable BST Expanding out

VCAS objects

Without

indirection

A, 2

B, 5 C, 5

D, 5 E, 5

root

A’, 1

B’, 4 C’, 3

Merge version list and
data structure nodes

60SPTDC 2023 PANAGIOTA FATOUROU

Experimental Evaluation
❑Adding support for multi-point queries on top of existing
concurrent lock-free data structures was very easy and required
adding fewer than 150 lines of code (in C++).

❑The vCAS approach adds very little overhead to the original data
structure

❑ The vCAS approach (which is general-purpose) is often as fast as,
or faster than, state-of-the-art lock-free data structures supporting
range queries.

61SPTDC 2023 PANAGIOTA FATOUROU

Summary of vCAS Technique
❑vCAS is an approach for adding snapshotting and multi-point
queries to existing concurrent data structures
◦ Easy-to-use: simply replace CAS with Versioned CAS

◦ Efficient: both theoretically and practically

◦ General: supports a wide range of data structures and multi-point queries

❑Code is available on GitHub: https://github.com/yuanhaow/vcaslib

❑Full version (with full proof of correctness & DS characterization for
supporting multi-point queries) is available on arxiv:
https://arxiv.org/abs/2007.02372

62SPTDC 2023 PANAGIOTA FATOUROU

https://github.com/yuanhaow/vcaslib
https://arxiv.org/abs/2007.02372

Multi-Version Garbage Collection

ANY SYSTEM THAT MAINTAINS MULTIPLE VERSIONS OF EACH OBJECT
NEEDS A WAY OF EFFICIENTLY RECLAIMING THEM!

63SPTDC 2023 PANAGIOTA FATOUROU

Research Question

How do we garbage collect,
efficiently, for multiversion data
structures?

64SPTDC 2023 PANAGIOTA FATOUROU

Ben-David, Blelloch, Fatourou, Ruppert,
Wei, DISC 2021

A general Multiversion Garbage Collection (GC)
scheme with the following properties:

◦ Progress: wait-free
◦ Time: O(1) per reclaimed version, on average
◦ Space: constant factor more versions than needed, plus an

additive term

Previous solutions either use:
• unbounded space [Fernandes et al., PPoPP’11] , or

• O(P) time per reclaimed version [Lu et al. DISC’13] [Böttcher et al., VLDB’19]

• P: number of processes

65SPTDC 2023 PANAGIOTA FATOUROU

Multiversion Garbage Collection (MVGC)

How do we identify which versions are not needed?

How do we safely reclaim them?

X

Y

Objects
Versions

Maintaining all old versions ⇒ high memory usage

66SPTDC 2023 PANAGIOTA FATOUROU

time

Which Versions are Needed?

Time

X

Y

Objects
Versions

Timestamps of multipoint queries

Most recent versions needed
Versions needed by
read-only operations

67SPTDC 2023 PANAGIOTA FATOUROU

Related Work – Epoch-Based Solutions
❑Reclaim versions overwritten before the start of the oldest
read-only operation

X

Operations started before
this point have completed

Safe to collect

68SPTDC 2023 PANAGIOTA FATOUROU

Related Work – Epoch-Based Solutions

Cons: High space usage
◦ Unable to collect newer obsolete versions

◦ Particularly bad with long read-only operations

◦ E.g. database scans, large range queries

◦ Paused process can lead to unbounded space usage

Pros: Fast, easy to implement

X

69SPTDC 2023 PANAGIOTA FATOUROU

Related Work – Other Solutions
Techniques have been developed to address shortcomings
of epoch-based solutions.

◦ GMV [Lu et al. DISC’13], Hana [Lee et al. SIGMOD’16], Steam
[Böttcher et al. VLDB’19]

◦ Require Ω(P) time, on average, to collect each version in worst case
executions.
◦ P: number of processes

◦ Keep up to P times more versions than necessary

70SPTDC 2023 PANAGIOTA FATOUROU

What is the problem to solve?

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

71SPTDC 2023 PANAGIOTA FATOUROU

Step 1: Identify obsolete versions

X

Y

SPTDC 2023 PANAGIOTA FATOUROU

Range Tracker

O(1) amortized time
O(needed) space

Unneeded Versions

Active multi-
point queries

Obsolete Versions

Step 2: Unlink from version list

X

Y

n

unneeded Need parent to unlink

We present a wait-free, amortized
O(1) algorithm for remove()

73SPTDC 2023 PANAGIOTA FATOUROU

Step 3: Reclaim memory of unlinked
versions

Xn

P1

• n is not safe to reclaim right away because a thread (P1) could be paused to
access it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve
this problem, but

• HP sacrifices wait-freedom
• CRC sacrifices space bounds

• Ben-David et al. presents a new safe reclamation scheme specifically for the
doubly-linked version list implementation it provides

74SPTDC 2023 PANAGIOTA FATOUROU

Overall Results
Time bounds:
◦ O(1) time, on average, to identify, remove, and reclaim a version
◦ Wait-free

Space bounds:
◦ Number of unreclaimed versions ∈ O(# required versions) + additive

term

Full version (with proof of correctness) available on arxiv:
https://arxiv.org/abs/2108.02775

75SPTDC 2023 PANAGIOTA FATOUROU

https://arxiv.org/abs/2108.02775

New MVGC Schemes
[Wei, Blelloch, Fatourou, Ruppert, PPoPP 2023]

Use range tracker to get good space efficiency

Time efficiency: BBF+ is over optimized for worst-case

Concurrent remove()s

• DL-RT: Range tracker + new doubly-linked version list

• SL-RT: Range tracker + new singly-linked version list

76SPTDC 2023 PANAGIOTA FATOUROU

Results
Two new MVGC schemes:

◦ Fast and space efficient in practice

◦ Strong space bounds in theory

Full paper (with proofs of correctness) is available on arxiv:
https://arxiv.org/abs/2212.13557

Code is available on GitHub:
https://github.com/cmuparlay/ppopp23-mvgc

77SPTDC 2023 PANAGIOTA FATOUROU

https://arxiv.org/abs/2212.13557
https://github.com/cmuparlay/ppopp23-mvgc

Conclusions
The vCAS Approach

❑Simple, constant-time approach to take a snapshot of a collection of CAS
objects.

❑Technique to use snapshots to implement linearizable multi-point queries in
many lock-free data structures.

❑Adding snapshots to a CAS-based data structure preserves the data structures’
asymptotic time bounds.

❑Every read is completed within a finite number of instructions (i.e. it is wait-
free).

78SPTDC 2023 PANAGIOTA FATOUROU

Conclusions
❑We present theoretically efficient solutions to the MVGC problem

❑Developed new techniques for all 3 steps:
1. Identify obsolete versions

2. Unlink from version list

3. Reclaim memory of unlinked versions

❑The MVGC schemes:

◦ Provide strong space and time bounds in theory.

◦ Space and time efficient in practice.

79SPTDC 2023 PANAGIOTA FATOUROU

Thank You!

QUESTIONS?

faturu@csd.uoc.gr

www.ics.forth.gr/~faturu/

80SPTDC 2023 PANAGIOTA FATOUROU

This work was supported by the Hellenic Foundation for Research and Innovation (HFRI)
under the “Second Call for HFRI Research Projects to support Faculty Members and
Researchers” (project number: 3684, project acronym: PERSIST).

mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/

We are recruiting!

