Hellenic Foundation for
nnnnnnnnnnnnn

N 27
FORTH-ICS

Multi-Version Concurrent Data Structures

PANAGIOTA FATOUROU

University of Crete, Department of Computer Science

Foundation for Research and Technology - Hellas

School on the Practice and Theory of Distributed Computing, November 2023

Multiversion Objects

Current version Current version Current version

|

Write(10) Write(8)

v

=

> A multiversion object maintains its previous versions,
so threads can have access to the history of the object (i.e., to its
previous values).

SPTDC 2023 PANAGIOTA FATOUROU

Multiversioning

* Multiversioning is widely used:
Database systems

* Software Transactional Memory
[Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

 Concurrent data structures

[Fatourou et al. SPAA'19] [Wei et al. PPoPP’21]
[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

SPTDC 2023 PANAGIOTA FATOUROU

Micro:

S

soft:

&

L Server

Why Multiversioning?

Many applications require querying large portions or
multiple parts of the data structure.

Big-data applications use shared in-memory tree-based
data indices

* Fast data retrieval

* Useful data analytics

SPTDC 2023 PANAGIOTA FATOUROU

~LOhonigR”
FORTH-ICS

“Why multivesion Concurrent Data
Structures?

Concurrent Data Take a snapshot Answer multi-
Structure built out of Of the data po|nt Quenes

CAS objects structure using snapshot

Snapshot: Saves a read-only version of the state of the data structure at a single
point in time. [An atomic view of the state of the data structure.]

The vCAS technique

* Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, and Yihan
Sun: Constant-Time Snapshots with Applications to Concurrent Data Structures, PPoPP 2021.

SPTDC 2023 PANAGIOTA FATOUROU

Background Knowledge

SPTDC 2023 PANAGIOTA FATOUROU

SPTDC 2023

Model

The system is asynchronous.

OO EOEEEEEEE

Threads communicate by
(%] [[w] (][] [w] [#] [w] [w] %] [%] [¥] [« [#] (%] [#] [#] []

{shared variables }
accessing shared variables.

In addition to Read and ATOMIC boolean Compare&Swap(

Write, a thread may execute Variable V, Value v,,,, Value v,) {

an atomic CAS instruction on

3 shared variable. if (V==v,4){V=v,, return TRUE; }
return FALSE;

Threads may fail by crashing.)

PANAGIOTA FATOUROU

Correctness [Herlihy & Wing]

Linearizability

In every execution a, each operation should have the
same response as if it has executed serially (or
atomically) at some point in its execution interval.
This point is called linearization point of the

operation.

PANAGIOTA FATOUROU

SPTDC 2023

Linearizability: Queue supporting
ReadAll()

fna(l) oklEnq) | peq

res=1 | | ok |

time

ReadAII!() ; ok() ->{1,2}

Queve: {1} {1, 2} 2} 2,3}

SPTDC 2023 PANAGIOTA FATOUROU

Linearizability: Queue supporting
ReadAll()

Example of non-Jinearizable execution

Enq(1) oks Eng(2

) oké

I |
Deq() 1 res=1 En

ok

time

ReadAll) ! g : ' {1,2,3}

Queve: {1} {1, 2} 2} 2,3}

SPTDC 2023 PANAGIOTA FATOUROU

Linearizability: Queue supporting
ReadAll()

Example of non- Imearlzable ex@cutlon

Enqg(1) Ok Enqg(2) | res=1 |

ol<§ Deq()

oki

time

v

: ' ReadAll) ! g | {1,2,3)
Set ReadAll() { // sequential alg ' '
Node *q = Head; : i
Set res; } {2} {2, 3}
while (g '= NULL) {
res = res U {g->data}; Head Tail

q = g-> next; } l
\ return res; } res = {1,2}

SPTDC 2023 PANAGIOTA FATOUROU

Linearizability: Queue supporting
ReadAll()

Example of non-linearizable execution

Enq(1) ok Eng(2) ok Deq() | res=1 ! ok

Engld
- time
| |
ReadAll() ! ! {1,2,3}
Set
No d;
i ULL) {
U {g->data}; Head Tail

xt: } res = {1,2,3} l l

SPTDC 2023 PANAGIOTA FATOUROU

Progress

Non-blocking Algorithms
Wait-Freedom

Every thread finishes the execution of its operation within a finite
number of steps.

Lock-Freedom

Some thread finishes the execution of its operation within a finite
number of steps.

SPTDC 2023 PANAGIOTA FATOUROU

FORTH-ICS

An Example of a Concurrent
Queue Implementation

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

SPTDC 2023

struct node {
T value ; // unmutable
CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; //initially, both point
to a dummy node

PANAGIOTA FATOUROU

SPTDC 2023

Michael & Scott Queue as an Example

Thread 1
Enqueue(1)

R

struct node {
T value ; // unmutable
CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; //initially, both point
to a dummy node

PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

struct node {
Thread 1 T value ; // unmutable
Enqueue(1) CAS Object next : struct node *;

}

CAS objects Head, Tail: struct node *; //initially, both point
to a dummy node

SPTDC 2023 PANAGIOTA FATOUROU

2PN
FORTH-ICS

Michael & Scott Queue as an Example

struct node {
Thread 1 T value ; // unmutable
Enqueue(1) CAS Object next : struct node *;
RO

A2 }
P

CAS objects Head, Tail: struct node *; //initially, both point
to a dummy node

Tail

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

struct node {
Thread 1 T value ; // unmutable
Eeue(l) CAS Object next : struct node *;

A2 }
PR

CAS objects Head, Tail: struct node *; //initially, both point
to a dummy node

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

struct node {

T value ; // unmutable
CAS Object next : struct node *;
Tail }
l CAS objects Head, Tail: struct node *; //initially, both point
M to a dummy node

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 1
Enqueue(1)

Thread 2
Enqueue(2)

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 1 Thread 2

..

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

Tail &

l =
w

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

K

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 1

R

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Tail

Head

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

Head é@

Thread 1
is slow

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

R

m
Head é@

Thread 1
is slow

Tail

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

@ CAS é@
Head &

Thread 1
is slow

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Thread 2

R

Head é\@

Thread 1
is slow

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Head Tail

D

SPTDC 2023 PANAGIOTA FATOUROU

& — 7 stores 1 asits return value
Thread 1
Deq()

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Head Tail
“

CAS

Thread 1
Deq()

SPTDC 2023 PANAGIOTA FATOUROU

Michael & Scott Queue as an Example

Head Tail
1 |

SPTDC 2023 PANAGIOTA FATOUROU

|
VCAS Technique !

/

Lock-free Take a snapshot Answer multi-
Data of the Data point Queries
Structure Structure using snapshot
Lock-free Queue [Michael & Scott’96] + Lock-free Snapshottable Queue
Enqueue, Dequeue Enqueue Preserves parallelism
_ Dequeue and time bounds
Works with many lock-free data structures,

including: Snapshot — 0O(1) time, a single CAS
BST [Ellen,Fatourou, Ruppert, Breugel’10] Range Query

Linked List [Harris'01] i-th element Wait-free
Chromatic Tree [BrownEllenRuppert’14] All elements [Linearizak;le

SPTDC 2023 PANAGIOTA FATOUROU

Overview of the VCAS Approach

1 CAS Object [T1 Versioned CAS (VCAS) Object
Supports: Supports:
¢ Read ° VRead
e CAS * VCAS
* readVersion —_

@ Camera Object

Time Complexity: -_'w '?'ulf psortS: hot
* VRead(X) } O(1) time, small dKeSnapsho

* VCAS(X, old, new) constant Viakes it soseible for o th dAt/I :

dVersion(X. S " read only the memory locations it needs
readVersion(X, $) wait-tfree from shared memory, knowning that all
such reads will be atomic.

SPTDC 2023 PANAGIOTA FATOUROU

ReadsO Reads1 Reads1

Query thread

Supporting Multi-Point Queries

Each query calls TakeSnapshot to get
a timestamp.

More than one queries may have
the same timestamp.

Each query attempts to atomically
iIncrement ts using CAS.

Each version of a vCAS object has a
timestamp, which has been read
from ts.

Versioned CAS Implementation

VCAS Object

List ordered by timestamps, next

most recent first.

nextv | 4 val {G——Hextv 8 | val

Current value of next: Pointer to next node of queue

A

vio0

* VCAS objects are represented internally using version lists. The
fields of a Vnode (i.e., a node of a version list) are:
e val
* 1s
e vnext

SPTDC 2023 PANAGIOTA FATOUROU

Versioned CAS Implementation

VCAS Object

e -

SPTDC 2023

next

/

hextv

—extv || 8

val

val

previous values of next field of node

PANAGIOTA FATOUROU

Versioned CAS Implementation

VCAS Object

next

;- /

v |O < nextv | 4 val iﬂ——n-extv 8 val

vCAS(X, old, new) vRead(X)
3 ts * Linkin a new node with * Help update timestamp of
ﬂ takeSnapshot() tlmestamp '!'BD most re.cent version
\ . Attempt to increment ts * Update its timestamp * Return its value
using CAS readVersion(X, t)
* Return its previous value * Help update timestamp

* Find newest version with timestamp <t

SPTDC 2023 PANAGIOTA FATOUROU

 Overview of the VCAS Approach:
Michael & Scott Queue as an Example

struct node {

| T value ;
Hlead TTII CAS Object next : struct node *;
M 0)ext{ 0 | val }

CAS objects Head, Tail: struct node *;

struct node {

T value ;
VRead(X) , vCAS Object next : struct node *;
* Help update timestamp of)
@ 0 ts most recent version of X
e Return current value of X vCAS objects Head, Tail: struct node *;

SPTDC 2023 PANAGIOTA FATOUROU

 Overview of the VCAS Approach:

Michael & Scott Queue as an Example

l \@ead Thread 1
— Enqueue(1)

‘o

SPTDC 2023

ts

vRead(X)

* Help update timestamp of
most recent version of X

e Return current value of X

PANAGIOTA FATOUROU

struct node {
T value ;
CAS Object next : struct node *;

}
CAS objects Head, Tail: struct node *;

struct node {
T value ;
vCAS Object next : struct node *;

}
vCAS objects Head, Tail: struct node *;

~ Overview of the VCAS Approach:
Michael & Scott Queue as an Example

struct node {

Hlead TTII Thread 1 Tvalue;
Enqueue(1) CAS Object next : struct node *;
/ruextv/ 0 va! /rLext{ 0 | val j,,‘"”.' N }

CAS objects Head, Tail: struct node *;

-

ﬂ 0 ts }

vCAS objects Head, Tail: struct node *;

struct node {
T value ;
vCAS Object next : struct node *;

SPTDC 2023 PANAGIOTA FATOUROU

 Overview of the VCAS Approach:

Michael & Scott Queue as an Example

Head Tail
l l Thread 1

/ne'xﬁo vaq MO val

/n%/ 0 /va’l/ nextv | -1 v4

vCAS(X, old, new)
 Malloc() a new vNode with
timestamp TBD (-1)
@ 0 ts ° Link it in the version list of the
vCAS object
* Update its timestamp

SPTDC 2023 PANAGIOTA FATOUROU

struct node {
T value ;
CAS Object next : struct node *;

}
CAS objects Head, Tail: struct node *;

struct node {
T value ;
vCAS Object next : struct node *;

}
vCAS objects Head, Tail: struct node *;

~ Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Head Tail struct node {
l l Thread 1 Tvalue :

E 1 .
nextv | 0 | val nextv | 0 | val ne() CAS Object next : struct node *;

}
: CAS objects Head, Tail: struct node *;
W 0)Ié]/< mextv | O Va/| /De'@ 0 /Vﬂ/ StrUCt nOde{
T value ;
vCAS(X, old, new) vCAS Object next : struct node *;
* Malloc() and link in a new vNode }
@ with timestamp TBD (-1) _ vCAS objects Head, Tail: struct node *;
0 ts ° Make it the first node in the vlist
of vCAS object

* Update its timestamp

SPTDC 2023 PANAGIOTA FATOUROU

" Overview of the VCAS Approach:
Michael & Scott Queue as an Example

Hlead \ 0 ts
yx{ 0 \1al pextv/ 0 val\ nextv | 0 | val

nextv | 0 [val |« frextv [0 |val | | nextv|o |val

SPTDC 2023 PANAGIOTA FATOUROU

* Overview of the VCAS Approach:

Michael & Scott Queue as an Example

Head Tail
nextv | ts | val v|io [val xtv | 0 | val
nextv val 3 d 1
nextv nextv | O va/l nextv | O /vél/

SPTDC 2023

PANAGIOTA FATOUROU

0

ts

 Overview of the VICAS Approach:
Michael & Scott Queue as an Example
B, .

Hlead Tail
nextv | ts | val vio | val nextv | 0 | val Thread 2 Thread 3

Enqueue(2) Enqe_ue(3)
e e

Thread 4

nextv | O /va’l/<——m§xtv 0 va/l nextv | O /va’l/

SPTDC 2023 PANAGIOTA FATOUROU

Overview of the VCAS Approach:
Michael & Scott Queue as an Example
N\ @ 0 ts

4 Head Version Iisb o .
of Head Version list of Tail

~ ~
\ \

0 < N 0] ln—— 0 < 0 [0| |

Knextv ts val

Tail

7y

A ~ ~ N
/ 0 /11— 0 / 0 0 7 0 / = 0 0 « 0
nextv ts val nextv ts val nextv ts val nextv ts val

Version list of Dummy-> next Version list of 1->next Version list of 2->next Version list of 3->next

SPTDC 2023 PANAGIOTA FATOUROU

Multi-Point Queries:
Michael & Scott Queue as an Example |

Head Tail @ / ts
\ @
x Takesnapshot > 0

0
/ e oo ReadAll()
nextv ts val
Thread 3
Enqueue(3)
fe
Thread 4 #
" / 0 < 0 0 -« 0 0
- nextv ts val nextv ts val nextv ts val

SPTDC 2023 PANAGIOTA FATOUROU

Multi-Point Queries:
Michael & Scott Queue as an Example
Head Tail © 1 s
S § | —

nextv ts val

D

A
o
A
o
A
S
[Ey
[

/o/]n- ol Ao |- 0 0| |« 1) kl)/

nextv ts val nextv ts val nextv ts val nexty ts val

SPTDC 2023 PANAGIOTA FATOUROU

Multi-Point Queries:
Michael & Scott Queue as an Example

Head Tail Set ReadAll() {
Node *qg = Head;

\ . while (g != NULL) {
res = res U {g->data};

0 < 1 ~N 0| [« 0 / < 0 < 1

nextv ts val q= Q'> neXt; }
return res,
\ 4 }

~

Aok o] Ao | 0 0| |« 1| 1

nextv ts val nextv ts val nextv ts val nextv ts val

! * Executes Sequential Code, but...)

ReadAll()

SPTDC 2023 PANAGIOTA FATOUROU

Linearizability: Queue supporting
ReadAll()

Example of non-linearizable execution

Eng(1) ok Enqg(2) ok Deq() 1+ res=1 o) ok
1 1
ReadAll() ! ! {1,2,3}
Set

ULL) {
U {g->data}; Head Tail

xt; } res ={1,2,3} l ‘

SPTDC 2023 PANAGIOTA FATOUROU

Multi-Point Queries:
Michael & Scott Queue as an Example

Head readVersion(X, t) i @
* Help update timestamp al 1 ts
\\ * Find newest version with time < t \\
0 (\ <t 1 N nextv | O | val extv | O yal < nextv | O v;\l < mextv | 1 va\l
nextv ts val /
D
A\ N\ N\
Aol 1ol el - [To](] o [[Ts 1

nextv ts val nextv ts val nextv ts val

nextv ts val
L*)
* Executes Sequential Code for ReadAll() but...

ReadAll() e Uses ReadVersion(0) to read the values of vCAS objects as it It returns {1,2}
goes

SPTDC 2023

PANAGIOTA FATOUROU

Overview of the VCAS Approach:
Michael & Scott Queue as an Example

void enq(T value) { void enq(T value) {
NODE *next , *last ; NODE *next , *last ;
1. NODE *p = newcell(NODE) ; 1. NODE *p = new(NODE, value, NULL) ;

// p->value = value ; p->next = NULL;
4. while (TRUE) { 4. while (TRUE) {
5 last = Tail ; 5 last = vRead(Tail) ;
6. next = last->next ; 6. next = vRead(last->next);
7 if (last != Tail) continue; 7 if (last != vRead(Tail)) continue;
8 if (next = NULL) { 8 if (next = NULL) {
9 CAS(Tail , last, next); 9 vCAS(Tail , last, next);

10. continue; 10. continue;

11. } 11. }

12. if (CAS(last->next, NULL, p)) break ; 12. if (VCAS(last->next , NULL, p)) break ;
13. } 13. }

14. CAS(Tail , last, p); 14. vCAS(Tail , last, p);

} }

SPTDC 2023 PANAGIOTA FATOUROU

Versioned CAS on BSTs

Examples of queries

Range queries
Tree height

Smallest key that
matches a condition

K-successors
Multi-lookup

SPTDC 2023

Snapshottable BST

Timestamps

PANAGIOTA FATOUROU

root

Expanding out VCAS objects

Comparison with Existing Techniques

LFCA -

KiWi
PNB-BST
SnapTree

Epoch RQs

SnapCollector

SPTDC 2023 PANAGIOTA FATOUROU

Practical Optimizations

_l Avoiding Indirection

_I Using exponential backoff to reduce contention
when accessing the global timestamp

_l Removing redundant versions from the version list

_l Garbage collecting old versions

SPTDC 2023 PANAGIOTA FATOUROU

FORTH-ICS

Avoiding Indirection

root

4_+ 1 }4_ o _{ 2 /D Merge version list and root

: 7 data structure nodes
A
Ii

5 5
DO
Snapshottable BST Expanding out

VCAS objects

SPTDC 2023 PANAGIOTA FATOUROU

L d bd =@

Without
indirection

Experimental Evaluation

_IAdding support for multi-point queries on top of existing
concurrent lock-free data structures was very easy and required
adding fewer than 150 lines of code (in C++).

_IThe vCAS approach adds very little overhead to the original data
structure

! The vCAS approach (which is general-purpose) is often as fast as,
or faster than, state-of-the-art lock-free data structures supporting
range queries.

SPTDC 2023 PANAGIOTA FATOUROU

Summary of vCAS Technique

_IvCAS is an approach for adding snapshotting and multi-point
gueries to existing concurrent data structures

> Easy-to-use: simply replace CAS with Versioned CAS

o Efficient: both theoretically and practically

> General: supports a wide range of data structures and multi-point queries

_ICode is available on GitHub: https://github.com/yuanhaow/vcaslib

_IFull version (with full proof of correctness & DS characterization for
supporting multi-point queries) is available on arxiv:
https://arxiv.org/abs/2007.02372

SPTDC 2023 PANAGIOTA FATOUROU

https://github.com/yuanhaow/vcaslib
https://arxiv.org/abs/2007.02372

Multi-Version Garbage Collection

ANY SYSTEM THAT MAINTAINS MULTIPLE VERSIONS OF EACH OBJECT
NEEDS A WAY OF EFFICIENTLY RECLAIMING THEM!

SPTDC 2023 PANAGIOTA FATOUROU

Research Question

How do we garbage collect,
efficiently, for multiversion data
structures?

Ben-David, Blelloch, Fatourou, Ruppert,m
Wei, DISC 2021

A general Multiversion Garbage Collection (GC)
scheme with the following properties:

> Progress: wait-free

°Time: O(1) per reclaimed version, on average

> Space: constant factor more versions than needed, plus an
additive term

Previous solutions either use:
 unbounded space [Fernandes et al., PPoPP’11], OF

* O(P) time per reclaimed version [Lu et al. DISC’13] [Béttcher et al., VLDB19]
* P: number of processes

SPTDC 2023 PANAGIOTA FATOUROU

Multiversion Garbage Collection (MVGC)

Objects

Versions

X

time

Maintaining all old versions = high memory usage

How do we identify which versions are not needed?

How do we safely reclaim them?

SPTDC 2023 PANAGIOTA FATOUROU

Which Versions are Needed?

Versions
Objects

- < < = U

00— 0 L
Versions needed by , [
. Most recent versions needed |
read-only operations I

~—

D l ,

e : : aeee0 |
1
1
1
\/ |

Timestamps of multipoint queries

“

SPTDC 2023 PANAGIOTA FATOUROU

Related Work — Epoch-Based Solutions

_IReclaim versions overwritten before the start of the oldest
read-only operation

Safe to collect Operations started before
this point have completed

>

SPTDC 2023 PANAGIOTA FATOUROU

Related Work — Epoch-Based Solutions

< - - - < P - -
« < < « <« < < e

N

Cons: High space usage
> Unable to collect newer obsolete versions
° Particularly bad with long read-only operations
> E.g. database scans, large range queries
> Paused process can lead to unbounded space usage
Pros: Fast, easy to implement

>

SPTDC 2023 PANAGIOTA FATOUROU

Related Work — Other Solutions

Techniques have been developed to address shortcomings
of epoch-based solutions.

°GMV [Lu et al. DISC’13], Hana [Lee et al. SIGMOD’16], Steam
[Bottcher et al. VLDB’19]

> Require Q(P) time, on average, to collect each version in worst case
executions.

> P: number of processes
> Keep up to P times more versions than necessary

SPTDC 2023 PANAGIOTA FATOUROU

What is the problem to solve?

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

SPTDC 2023 PANAGIOTA FATOUROU

Step 1: Identify obsolete versions

Unneeded Versions #
0(1) amortized o ‘ Obsolete Versions
Active multi-

=)

point queries

a

a
A
y
a
A
a
J N

Y

SPTDC 2023 PANAGIOTA FATOUROU

Step 2: Unlink from version list

Lnnoeadad Need parent to unlink

We present a wait-free, amortized
O(1) algorithm for remove()

SPTDC 2023 PANAGIOTA FATOUROU

Step 3: Reclaim memory of unlinked
versions

P1

* nis not safe to reclaim right away because a thread (P1) could be paused to
access it

e Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve
this problem, but
* HP sacrifices wait-freedom
e CRC sacrifices space bounds

* Ben-David et al. presents a new safe reclamation scheme specifically for the
doubly-linked version list implementation it provides

SPTDC 2023 PANAGIOTA FATOUROU

Overall Results

Time bounds:
°0(1) time, on average, to identify, remove, and reclaim a version
o Wait-free

Space bounds:

> Number of unreclaimed versions € O(# required versions) + additive
term

Full version (with proof of correctness) available on arxiv:
https://arxiv.org/abs/2108.02775

SPTDC 2023 PANAGIOTA FATOUROU

https://arxiv.org/abs/2108.02775

New MVGC Schemes

[Wei, Blelloch, Fatourou, Ruppert, PPoPP 2023]

Use range tracker to get good space efficiency

Time efficiency: BBF+ is over optimized for worst-case

Concurrent remove()s

* DL-RT: Range tracker + new doubly-linked version list
* SL-RT: Range tracker + new singly-linked version list

SPTDC 2023 PANAGIOTA FATOUROU

Results

Two new MVGC schemes:
> Fast and space efficient in practice
> Strong space bounds in theory

Full paper (with proofs of correctness) is available on arxiv:
https://arxiv.org/abs/2212.13557

Code is available on GitHub:
https://github.com/cmuparlay/ppopp23-mvec

SPTDC 2023 PANAGIOTA FATOUROU

https://arxiv.org/abs/2212.13557
https://github.com/cmuparlay/ppopp23-mvgc

Conclusions

The vCAS Approach

ISimple, constant-time approach to take a snapshot of a collection of CAS
objects.

_ITechnique to use snapshots to implement linearizable multi-point queries in
many lock-free data structures.

JAdding snapshots to a CAS-based data structure preserves the data structures’
asymptotic time bounds.

_IEvery read is completed within a finite number of instructions (i.e. it is wait-
free).

SPTDC 2023 PANAGIOTA FATOUROU

Conclusions

_!We present theoretically efficient solutions to the MVGC problem

_!Developed new techniques for all 3 steps:
1. Identify obsolete versions

2. Unlink from version list
3. Reclaim memory of unlinked versions

IThe MVGC schemes:
> Provide strong space and time bounds in theory.
° Space and time efficient in practice.

SPTDC 2023 PANAGIOTA FATOUROU

This work was supported by the Hellenic Foundation for Research and Innovation (HFRI)
under the “Second Call for HFRI Research Projects to support Faculty Members and
Researchers” (project number: 3684, project acronym: PERSIST).

Thank You!

QUESTIONS?

faturu@csd.uoc.gr

www.ics.forth.gr/~faturu/

SPTDC 2023 PANAGIOTA FATOUROU

mailto:faturu@csd.uoc.gr
http://www.ics.forth.gr/~faturu/

We are recruiting!

